29 resultados para hyperbranched
Resumo:
A new method for synthesis of novel hyperbranched poly(ester-amide)s from commercially available AA' and CBx type monomers has been developed on the basis of a series of model reactions. The hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by thermal polycondensation of carboxyl anhydrides (AA') and multihydroxyl primary amine (CBx) without any catalyst and solvent. The reaction mechanism in the initial stage of polymerization was investigated with in situ H-1 NMR. In the initial stage of the reaction, primary amino groups of 2-amino-2-ethyl-1,3-propanediol (AEPO) or tris(hydroxymethyl)aminomethane (THAM) react rapidly with anhydride, forming an intermediate which can be considered as a new AB(x) type monomer. Further self-polycondensation reactions of the AB. molecules produce hyperbranched polymers. Analysis using H-1 and C-13 NMR spectroscopy revealed the degree of branching of the resulting polymers ranging from 0.36 to 0.55. These hyperbranched poly(ester-amide)s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy, possess high molecular weights with broad distributions and display glass-transition temperatures (T(g)s) between 7 and 96 degreesC.
Resumo:
A novel AB(3)-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.
Resumo:
A novel, hyperbranched, amphiphilic multiarm biodegradable polyethylenimine-poly(gamma-benZyl-L-gluta- mate) (PEI-PBLG) copolymer was prepared by the ring-opening polymerization of gamma-benzyl-L-glutamate-N-car-boxyanhydride (BLG-NCA) with hyperbranched PEI as a macroinitiator. The copolymer could self-assemble into core-shell micelles in aqueous solution with highly hydrophobic micelle cores. As the PBLG content was increased, the size of the micelles increased and the critical micelle concentration (CMC) decreased. The surface of the micelles had a positive potential. The cationic micelles were capable of complexing with plasmid DNA (pDNA), which could be released subsequently by treatment with polyanions. The PEI-PBLG copolymer formed unimolecular micelles in chloroform solution. ne pH-sensitive phase-transfer behavior exhibited two critical pH points for triggering the encapsulation and release of guest molecules. Both the encapsulation and release processes were rapid and reversible. Under strong acidic or alkaline conditions, the release process became partially or completely irreversible.
Resumo:
A new method for syntheses of hyperbranched poly(ester-amide)s from commercially available A(2) and CBx type monomers has been developed on the basis of a series of model reactions. The aliphatic and semiaromatic hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by in situ thermal polycondensation of intermediates obtained from dicarboxylic acids (A(2)) and multihydroxyl primary amines (CBx) in N,N-dimethylformamide. Analyses of FTIR, H-1 NMR, and C-13 NMR spectra revealed the structures of the polymers obtained. The MALDI-TOF MS of the polymers indicated that cyclization side reactions occurred during polymerization. The hyperbranched poly(ester-amide) s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy. The DBs of the polymers were determined to be 0.38-0.62 by H-1 NMR or quantitive C-13 NMR and DEPT 135 spectra. These polymers exhibit moderate molecular weights, with broad distributions determined by size exclusion chromatography ( SEC), and possess excellent solubility in a variety of solvents such as N, N- dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, and ethanol, and display glass-transition temperatures (T(g)s) between -2.3 and 53.2 degrees C, determined by DSC measurements.
Resumo:
The four AB(2) monomers, N-[3- or 4-bis(4-hydroxyphenyl)toluoyl]-4-chlorophthalimide and N-{3- or 4-[1,1-bis(4-hydroxyphenyl)]ethylphenyl}-4-chlorophthalimides, were prepared and used for synthesis of hyperbranched poly(ether imide)s bearing hydroxyl end groups. These hyperbranched poly(ether imide)s had moderate molecular weights with broad distributions and showed glass-transition temperatures (Tgs) between 177 and 230 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 5% weight-loss temperatures (T-d(5%)) ranging from 240 to 281 degreesC. Analysis using H-1 NMR spectroscopy revealed the four types of hyperbranched poly(ether imide)s to have similar degrees of branching (ca. 60%). These polymers were modified by acylation or nucleophilic substitution reaction at the hydroxyl end groups. The conversion effectiveness depended on the type of modification reaction, modifier, and reaction conditions. The thermal stability and solubility of hyperbranched poly(ether imide)s were improved by the modification of the end groups.
Resumo:
The synthesis and characterization of hyperbranched aromatic poly(ester-imide)s are described. A variety of AB(2) monomers, N-[3- or 4-bis(4-acetoxyphenyl)toluoyl]-4-carboxyl-phthalimide and N-{3- or 4-[1,1-bis(4-acetooxyphenyl)]ethylphenyl}-4-carboxy phthalimides were prepared starting from condensation of nitrobenzaldehydes or nitroacetophenones with phenol and used for synthesis of hyperbranched poly(ester-imide)s containing terminal acetyl groups by transesterification reaction. These hyperbranched poly(ester-imide)s were produced with weight-average molecular weight of up to 6.87 g/mol. Analysis of H-1 NMR and C-13 NMR spectroscopy revealed the structure of the four hyperbranched poly(ester-imide)s. These hyperbranched poly(ester-imide)s exhibited excellent solubility in a variety of solvents such as N,N-dimethylacetamide, dimethyl sulfoxide, and tetrahydrofuran and showed glass-transition temperatures between 217 and 255 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 10% weight-loss temperature (T-d(10)) ranging from 365 to 416 degreesC in nitrogen.
Resumo:
Pyrolysis of hyperbranched poly[1,1'-ferrocenylene(methyl)silyne] (5) yields mesoporous, conductive, and magnetic ceramics (6). Sintering at high temperatures (1000-1200 degrees C) under nitrogen and argon converts 5 to 6N and 6A, respectively, in similar to 48-62% yields. The ceramization yields of 5 are higher than that (similar to 36%) of its linear counterpart poly[1,1'-ferrocenylene(dimethyl)silylene] (1), revealing that the hyperbranched polymer is superior to the linear one as a ceramic precursor. The ceramic products 6 are characterized by SEM, XPS, EDX, XRD, and SQUID. It is found that the ceramics are electrically conductive and possess a mesoporous architecture constructed of tortuously interconnected nanoclusters. The iron contents of 6 estimated by EDX are 36-43%, much higher than that (11%) of the ceramic 2 prepared from the linear precursor 1. The nanocrystals in 6N are mainly alpha-Fe2O3 whereas those in 6A are mainly Fe3Si. When magnetized by an external field at room temperature, 6A exhibits a high-saturation magnetization (M-s similar to 49 emu/g) and near-zero remanence and coercivity; that is, 6A is an excellent soft ferromagnetic material with an extremely low hysteresis loss.
Resumo:
超支化聚合物是一类高度支化的具有三维椭球状立体构造的大分子。由于具有传统线形聚合物所没有的低粘度、高流变、良好的溶解性及大量末端官能团等物理化学特性,近年来已成为高分子科学界研究的一个热点。十多年来,人们在合成方法、表征手段、应用及理论研究等方面取得了可喜的成就。但是,目前超支化聚合物的发展还存在着合成方法和所合成的聚合物种类有限,成本较高及结构可控性差等问题。设计合成了五个系列的新型ABx单体,二经基苯氯代苯酞亚胺、二乙酞氧基苯甲酸苯酞亚胺、三乙酞氧基苯酞胺酸,二经基苯基联苯酰胺酸和多轻基烷基联苯酞胺酸,再分别通过缩聚反应一步成功制备了新型芳香超支化聚醚酞亚胺、芳香超支化聚酷酰亚胺,可降解的超支化聚酷酞胺、芳香和半芳香超支化聚酯酞胺。通过傅立叶红外光谱(FT)、核磁共振波谱(NMR)凝胶渗透色谱(GPC)、热差(DSC)和热重(TGA)等分析手段,详细研究了它们的结构和性质,这些聚合物都具有较低的粘度、良好的溶解性和热稳定性。末端基团的种类和性质在很大程度上影响聚合物的性质。通过小角X一射线散射仪和紫外一可见光谱研究了由天然原料制备的超支化聚酷酞胺的降解行为。设计了由商品化原料,二梭酸酐(AAA,型)与二乙醇胺归32型)、脂肪二梭酸配与多经基伯胺(CBx型)和二酸(Az型)与多轻基伯胺一步合成超支化聚合物的新方法,成功地合成了二十四种不同结构的新型超支化聚酷酰胺。通过FTIR、NMR和DEPT NMR、GPC、基质辅助激光解析时间飞行质谱(MALDI-TOF-MS)、DSC和TGA等分析手段,详细研究了它们的结构和性质。这些聚合物都具有较低的粘度、良好的溶解性。
Resumo:
Branched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 degrees C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield.
Resumo:
Branched polyacrylonitriles were prepared via the one-pot radical copolymerization of acrylonitirle and an asymmetric divinyl monomer (allyl methacrylate) that possesses both a higher reactive methacrylate and a lower reactive allyl. RAFT technique was used to keep a low-propagation chain concentration via a fast reversible chain transfer euilibration and thus the cross-linking was prevented until a high level of monomer conversions. This novel strategy was demonstrated to engenerate a branched architecture with abundant pendant functional vinyl and nitrile groups, and controlled molecular weight as a behavior of controlled/living radical polymerization characteristics. The effect of the various experimental parameters, including temperature, brancher to monomer molar ratio, and chain transfer agent to initiator molar ratio, on the control Of moleculer dimension (molecular weight and polydispersity indices) and the degree of branching were investigated in detail. Moreover, H-1 NMR and gel permeation chromatography confirm the branched architecture of the resultant polymer. The intrinsic viscosity of the copolymer is also lower than the linear counterpart.
Resumo:
Polyethyleneimine-functionalized platinum nanoparticles (PtNPs) with excellent electrochemiluminescence (ECL) properties were synthesized and applied to the amplified analysis of biomolecules. These particles were prepared at room temperature, with hyperbranched polyethyleneimine (HBPEI) as the stabilizer. The UV/Vis absorption spectra and transmission electron microscopy images clearly confirmed the formation of monodisperse PtNPs. Such particles proved to possess high stability against salt-induced aggregation, enabling them to be employed even under high-salt conditions. Owing to the existence of many tertiary amine groups, these particles exhibited excellent ECL behavior in the presence of tris(2.2'-bipyridyl)ruthenium(II). An HBPEI-coated particle possessed an ECL activity that was at least 60 times higher than that of a tripropylamine molecule. Furthermore, these particles could be immobilized on the 3-aminopropyltriethoxysilane-treated quartz substrates to amplify the binding sites for carboxyl groups. Through this approach, PtNPs were applied to the amplified analysis of the hemin/G-quadruplex DNAzyme by using the luminol/H2O2 chemiluminescence method.
Resumo:
A facile and wet-chemical approach was employed to control synthesis of self-organizing, hyperbranched nanoporous Au microsheet with high quality in bulk quantity. This method produced nanoporous Au microsheets with a thickness of 7-15 nm. The microsheets were composed of irregularly interconnected planar Au nanoplates with interstices, i.e. nanopores of 10-50 nm. And the nanoporous Au microsheets were enveloped in 10-30 nm thick polyaniline (PANI) sheaths. The morphology of the nanostructured Au composites could also be easily tuned by changing the concentration of aniline and chlorauric acid. The dendritic and epitaxial growth of nanoporous Au microsheet was believed as the diffusion-limited process confined in the lamellar emulsion phase through self-assembly of aniline and dodecylsulfate. The solution reaction proceeded at a mild condition (room temperature and aqueous solutions), and less toxic reagents were employed instead of extreme toxic and corrosive chemicals.
Resumo:
The dynamic mean-field density functional method, driven from the generalized time-dependent Ginzburg-Landau equation, was applied to the mesoscopic dynamics of the multi-arms star block copolymer melts in two-dimensional lattice model. The implicit Gaussian density functional expression of a multi-arms star block copolymer chain for the intrinsic chemical potentials was constructed for the first time. Extension of this calculation strategy to more complex systems, such as hyperbranched copolymer or dendrimer, should be straightforward. The original application of this method to 3-arms block copolymer melts in our present works led to some novel ordered microphase patterns, such as hexagonal (HEX) honeycomb lattice, core-shell HEX lattice, knitting pattern, etc. The observed core-shell HEX lattice ordered structure is qualitatively in agreement with the experiment of Thomas [Macromolecules 31, 5272 (1998)].
Resumo:
Aryl polyester dendrimers and dendrons have been prepared by using 'branched monomer strategies', in which the surface and the focal point of the multi-branched monomer have been protected with two different kinds of protective group. The protective group for the focal point was stable during deprotection of the surface. Different wedges could be attached to the multi-branched monomers to form large dendrons whilst active dendrons could be attached to different cores to form various dendrimers with different wedges and different cores.