78 resultados para hormone induction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth hormone is a classic molecule in the study of the molecular clock hypothesis as it exhibits a relatively constant rate of evolution in most mammalian orders except primates and artiodactyls, where dramatically enhanced rate of evolution (25-50-fold) has been reported. The rapid evolution of primate growth hormone occurred after the divergence of tarsiers and simians, but before the separation of old world monkeys (OWM) from new world monkeys (NWM). Interestingly, this event of rapid sequence evolution coincided with multiple duplications of the growth hormone gene, suggesting gene duplication as a possible cause of the accelerated sequence evolution. Here we determined 21 different GH-like sequences from four species of OWM and hominoids. Combining with published sequences from OWM and hominoids, our analysis demonstrates that multiple gene duplications and several gene conversion events both occurred in the evolutionary history of this gene family in OWM/hominoids. The episode of recent duplications of CSH-like genes in gibbon is accompanied with rapid sequence evolution likely resulting from relaxation of purifying selection. GHN genes in both hominoids and OWM are under strong purifying selection. In contrast, CSH genes in both lineages are probably not. GHV genes in OWM and hominoids evolved at different evolutionary rates and underwent different selective constraints. Our results disclosed the complex history of the primate growth hormone gene family and raised intriguing questions on the consequences of these evolutionary events. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Not all experiences are memorized equally well. Especially, some types of stress are unavoidable in daily life and the stress experience can be memorized for life. Previous evidence has showed that synaptic plasticity, such as long-term potentiation (LTP) that may be the major cellular model of the mechanism underlying learning and memory, is influenced by behavioral stress. However, the effect of behavioral stress on age-related synaptic plasticity in-vivo was primarily known. Here we found that the LTP induction in the hippocampal CA1 region of anesthetized rats obviously showed inverted-U shape related to ages (4, 10 and 74 weeks old rats), but low-frequency stimulation was unable to induce reliable long-term depression (LTD) in these animals. Furthermore, acute elevated platform (EP) stress enabled reliable LTD significantly and completely blocked LTP induction at these ages. Importantly, LTD after exposure to acute EP stress showed similar magnitude over these ages. The present results that stress enables LTD but impairs LTP induction at these three ages strengthen a view that stress experience-dependent LTD (SLTD) may underlie stress form of aberrant memories. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sertoli cells play a central role in the control and maintenance of spermatogenesis. Isolated Sertoli cells of mouse and rat testes have been shown to secrete plasminogen activator (PA) and a plasminogen activator inhibitor type-1 (PAI-1) in culture. In this study, we have investigated the hormonal regulation of PA and PAI-1 activities in cultured monkey Sertoli cells. Sertoli cells (5x10(5) cells/well) isolated from infant rhesus monkey testes were preincubated at 35 degrees C for 16 h in 24-well plates precoated with poly(D-lysine) (5 mu g/cm(2)) in 0.5 mi McCoy's 5a medium containing 5% of fetal calf serum and further incubated for 48 h in 0.5 mi serum-free medium with or without various hormones or other compounds, PA as well as PAI-1 activities in the conditioned media were assayed by fibrin overlay and reverse fibrin autography techniques respectively. The Sertoli cells in vitro secreted only tissue-type PA (tPA), no detectable amount of urokinase-type PA (uPA) could be observed, Monkey Sertoli cells were also capable of secreting PAI-1, Immunocytochemical studies indicated that both tPA and PAI-1 positive staining localized in the Sertoli cells, spermatids and residual bodies of the seminiferous epithelium; Northern blot analysis further confirmed the presence of both tPA and PAI-1 mRNA in monkey Sertoli cells. Addition of follicle-stimulating hormone (FSH) or cyclic adenosine monophosphate (cAMP) derivatives or cAMP-generating agents and gonadotrophin-releasing hormone (GnRH) agonist or phorbol ester (PMA) to the cell culture significantly increased tPA activity. PAI-1 activity in the culture was also enhanced by these reagents except 8-bromo-dibutyryl-cAMP, forskolin and 3-isobutyl-1-methylxanthin (MIX) which greatly stimulated tPA activity, whereas decreased PAI-1 activity, implying that neutralization of PAI-1 activity by tile high level of tPA in the conditioned media may occur. These data suggest that increased intracellular signals which activate protein kinase A (PKA), or protein kinase C (PKC) can modulate Sertoli cell tPA and PAI-1 activities, The concomitant induction of PA and PAI-1 by the same reagents in the Sertoli cells may reflect a finely tuned regulatory mechanism in which PAI-1 could limit the excession of the proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food consumption, number of movements and feeding hierarchy of juvenile transgenic common carp Cyprinus carpio and their size-matched non-transgenic conspecifics were measured under conditions of limited food supply. Transgenic fish exhibited 73 center dot 3% more movements as well as a higher feeding order, and consumed 1 center dot 86 times as many food pellets as their non-transgenic counterparts. After the 10 day experiment, transgenic C. carpio had still not realized their higher growth potential, which may be partly explained by the higher frequency of movements of transgenics and the 'sneaky' feeding strategy used by the non-transgenics. The results indicate that these transgenic fish possess an elevated ability to compete for limited food resources, which could be advantageous after an escape into the wild. It may be that other factors in the natural environment (i.e. predation risk and food distribution), however, would offset this advantage. Thus, these results need to be assessed with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorotelomer alcohols (FTOHs) have shown estrogenic activity in vitro and in vivo, but the mechanism of this activity is not known. In this study, 18-week-old zebrafish (Danio rerio) were exposed to 0, 0.03, 0.3 and 3.0 mg/l 1H, 1H, 2H, 2H-perfluorooctan-1-ol (6:2 ETCH) for 7 days, and the effects on plasma sex hormone levels were measured followed by use of real-time PCR to examine selected gene expression in hypothalamic-pituitary-gonadal (HPG) axis and liver. Exposure to 6:2 FTOH significantly increased plasma estradiol (E2) and testosterone (T) levels in both males and females. Furthermore, the ratio of T/E2 was reduced in females while increased in males. In females, the increase of E2 was accompanied by up-regulated hepatic estrogenic receptor alpha (ER alpha) and vitellogenin (VTG1 and VTG3) expression. In males, the elevation of the T level is consistent with the up-regulation of cytochrome P450 c17 alpha-hydroxylase, 17, 20-lase (CYP17) and the down-regulation of cytochrome P450 aromatase A (CYP19A). The present study demonstrated that waterborne exposure to 6:2 FTOH alter plasma sex hormone levels and the ratio of T/E2, as well as the transcriptional profiles of some genes in the HPG axis and liver. The results suggested that FTOHs may disturb fish reproduction through endocrine disrupted activity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development. (Endocrinology 150: 2767-2774, 2009)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathepsin B is a lysosomal cysteine protease of the papain-like enzyme family with multiple biological functions. In this study, Paralichthys olivaceus cathepsin B (PoCatB) cDNA was isolated from flounder embryonic cells (FEC) treated with UV-inactivated grass carp hemorrhage virus (GCHV) and subsequently identified as a vitally induced gene. The full length cDNA of PoCatB is 1801 bp encoding 330-amino acids. The deduced protein has high homology to all known cathepsin B proteins, containing an N-terminal signal peptide, cysteine protease active sites, the occluding loop segment and a glycosylation site, all of which are conserved in the cathepsin B family. PoCatB transcription of FEC cells could be induced by turbot (Scophthalmus maximus) rhabdovirus (SMRV), UV-inactivated SMRV, UV-inactivated GCHV, poly I:C or lipopolysaccharide (LPS), and SMRV or poly I:C was revealed to be most effective among the five inducers. In normal flounder, PoCatB mRNA was detectable in all examined tissues. Moreover, SMRV infection could result in significant upregulation of PoCatB mRNA, predominantly in spleen, head kidney, posterior kidney, intestine, gill and muscle with 18.2,10.9, 24.7,12, 31.5 and 18 fold increases at 72 h post-infection respectively. These results provided the first evidence for the transcriptional induction of cathepsin B in fish by virus and LPS, indicating existence of a novel function in viral defense. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic animals with improved qualities have the potential to upset the ecological balance of a natural environment. We investigated metabolic rates of 'all-fish' growth hormone (GH) transgenic common carp under routine conditions and during starvation periods to determine whether energy stores in transgenic fish would deplete faster than controls during natural periods of starvation. Before the oxygen uptake was measured, the mean daily feed intake of transgenic carp was 2.12 times greater than control fish during 4 days of feeding. The average oxygen uptake of GH transgenic fish was 1.32 times greater than control fish within 96 h of starvation, but was not significantly different from controls between 96 and 144 h of starvation. At the same time, GH transgenic fish did not deplete energy reserves at a faster rate than did the controls, as the carcass energy contents of the two groups following a 60-d starvation period were not significantly different. Consequently, we suggest that increased routine oxygen uptake in GH transgenic common carp over that of control fish may be mainly due to the effects of feeding, and not to an increase in basal metabolism. GH transgenic fish are similar to controls in the regulation of metabolism to normally distribute energy reserves during starvation. (c) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the sub-lethal toxicity of hexabromocyclododecane (HBCDD) in fish. Adult Chinese rare minnows as in vivo models were exposed to waterborne HBCDD from 1 to 500 mu g/l for 14, 28 and 42 days. Hepatic CYP1A1 (ethoxyresorufin-O-deethylase, EROD) and CYP2B1 (pentaoxyresorufin-O-depentylase, PROD) activities were measured. At the same time, molecular biomarkers of oxidative stress were also assayed in the brain, including reactive oxygen species (ROS), lipid peroxidation products (thiobarbituric acid-reactive substances, TBARS), DNA damage and protein carbonyl, as well as superoxide dismutase (SOD) activity and glutathione (GSH) content. DNA damage was evaluated using the Comet assay on erythrocytes. Besides, the content of HBCDD in whole fish was determined after 42 days exposure. The results show that HBCDD could induce EROD and PROD at 500 mu g/l after 28 days exposure, and at 100 to 500 mu g/l after 42 days exposure (P < 0.05), respectively. ROS formation in fish brain was observed to be increased in both time- and dose-dependent manner due to HBCDD exposure. The significant increases in TBARS and protein carbonyl contents occurred in fish brain after 28 and 42 days exposure (P < 0.05). Significant DNA damage in erythrocytes by Comet assay was also found in the 100-500 mu g/l exposure groups (P < 0.05) after 42 days exposure. Moreover, significant depletion in brain GSH content occurred in all treated groups (P < 0.05) and apparent inhibition in SOD activity in brain was observed in the groups of 10-500 mu g/l concentrations during 42 days exposure. The results demonstrate that increasing duration of HBCDD exposure induced EROD and PROD activities, caused excess ROS formation, finally resulted in oxidative damage to lipids, proteins and DNA and decreased antioxidant capacities in fish. Chemical analysis of HBCDD in whole fish showed accumulation up to 654 mu g/g wet weight. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to purify the common native carp growth hormone (ncGH), produce monoclonal antibodies (mAbs) to common native carp growth hormone (ncGH), and further enhance the sensitivity of enzyme-linked immunosorbent assays (ELISA) for ncGH. Additionally, we investigated changes in serum ncGH levels in carps raised in different environmental conditions. The recombinant grass carp (Ctenopharyngodon idella) growth hormone was purified and used as antigen to immunize the rabbit. The natural ncGH was isolated from the pituitaries of common carp. SDS-PAGE and Western blot utilizing the polyclonal anti-rgcGH antibody confirmed the purification of ncGH from pituitaries. Purified ncGH was then used as an immunogen in the B lymphocyte hybridoma technique. A total of 14 hybridoma cell lines (FMU-cGH 1-14) were established that were able to stably secrete mAbs against ncGH. Among them, eight clones (FMU-cGH1-6, 12 and 13) were successfully used for Western blot while nine clones (FMU-cGH 1-7, 9 and 10) were used in fluorescent staining and immunohistochemistry. Epitope mapping by competitive ELISA demonstrated that these mAbs recognized five different epitopes. A sensitive sandwich ELISA for detection of ncGH was developed using FMU-cGH12 as the coating mAb and FMU-cGH6 as the enzyme labeled mAb. This detection system was found to be highly stable and sensitive, with detection levels of 70 pg/mL. Additionally, we found that serum ncGH levels in restricted food group and in the net cage group increased 6.9-and 5.8-fold, respectively, when compared to controls, demonstrating differences in the GH stress response in common carp under different living conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the active metabolites of polychlorinated biphenyl (PCBs), hydroxylated polychlorinated biphenyls (OH-PCBs) are found in wildlife and human tissues. They have been proposed as main contributors for endocrine disruption of PCBs in living organisms. In this study, mono-ortho PCB 156 and its hydroxylated metabolites 4'-OH-PCB 159, 4'-OH-PCB 121, and 4'-OH-PCB 72 were selected to investigate the toxic effects on rat hepatoma H4IIE cell line and rat thyroid follicle FRTL-5 cell line at concentrations of 1, 10(2), 10(4) nM. 7-Ethoxyresorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-dealkylase (PROD) activities were determined with micro-EROD/PROD to indicate cytochrome P4501 A1 (CYP1A1) and cytochrome P4502B (CYP2B) induction in the H4IIE cell after exposure for 72 h. To assess thyroid disruption of these compounds, thyroglobulin concentrations also were detected inside FRTL-5 cell with immunocellularchemistry and in its medium with radioimmunoassay after exposure for 24 It. Significant inductions of EROD activity by PCB 156 at 102 and 104 nM (p < 0.05) were observed, but no effects by the three OH-PCBs in H4IIE cell line. 7-Pentoxyresorufin-O-dealkylase activities were induced only by 10(4) nM of PCB156 and the three OH-PCBs (p < 0.05). Meanwhile, significant increases of thyroglobulin concentrations were observed in the medium of FRTL-5 cell exposed to 4'-OH-PCB 121 and 4'-OH-PCB 72 at all of the test concentrations (p < 0.05), but not to the other compounds. The results demonstrated that mono-ortho PCBs mainly could be metabolized to hydroxylated metabolites through CYP1A1 instead of CYP2B. Moreover, after being metabolized, OH-PCBs still sustained the ability to induce PROD activity and did exhibit the disruption on thyroglobulin synthesis/excretion in rat cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfluorochemicals (PFCs) are emerging persistent organic pollutants (POPs) and are widely present in the environment, wildlife and humans. Recently, reports have suggested that PFCs may have endocrine-disrupting activities. In the present study, we have developed a non-competitive enzyme-linked immunosorbent assay (ELISA) method to investigate estrogenic activities of selected PFCs using vitellogenin (VTG) induction in primary cultured hepatocytes of freshwater male tilapia (Oreochromis niloticus). Cultured hepatocytes were exposed to various concentrations of perfluorooctanyl sulfonate (PFOS), pentadecafluorooctanoic acid (PFOA), 1H, 1H, 2H, 2H-nonafluoro-1-hexanol (4:2 FTOH), 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH) and 1H, 1H, 2H, 2H-perfluoro-1-decanol (8:2 FTOH) for 48h, while 17 beta-estradiol (E2) and 4-nonylphenol (4-NP) were used as positive controls. A dose-dependent induction of VTG was observed in E2-, 4-NP-, PFOS-, PFOA- and 6:2 FrOH-treated cells, whereas VTG levels remained unchanged in the 4:2 FTOH and 8:2 FTOH exposure groups at the concentrations tested. The estimated 48-h EC50 values for E2,4-NP, PFOS, PFOA and 6:2 FTOH were 4.7 x 10(-7), 7.1 x 10(-6), 1.5 x 10(-5), 2.9 x 10(-5) and 2.8 x 10(-5) M, respectively. In the time-course study, significant VTG induction took place at 24 h (E2), 6 It (4-NP), 48 It (PFOS), 48 It (PFOA), 72 It (4:2 FTOH), 12 h (6:2 FTOH), 72 h (8:2 FTOH), and increased further after 96 It of exposure. Co-exposure to binary mixtures of individual PFCs and E2 for 48 It significantly inhibited E2-induced hepatocellular VTG production in a dose-dependent manner except for 4:2 FTOH. The estimated 48-h IC50 (concentration of a compound that elicits 50% inhibition of maximally E2-induced VTG) values for PFOS, PFOA, 6:2 FTOH and 8:2 FTOH were 3.1 x 10(-7), 5.1 X 10(-7), 1.1 X 10(-6) and 7.5 x 10(-7) M, respectively. In order to further investigate the estrogenic mechanism of PFCs, the hepatocytes were co-exposed to binary mixtures of individual chemicals (E2,4-NP, PFOS, PFOA and 6:2 FTOH) and the known estrogen receptor inhibitor tamoxifen for 48 h; tamoxifen significantly inhibited the ability of these chemicals to stimulate vitellogenesis. The overall results demonstrated that PFOS, PFOA and FTOHs have estrogenic activities and that exposure to a combination of E2 and PFCs produced anti-estrogenic effects. The results of the estrogen receptor inhibition assay further suggested that the estrogenic effect of PFCs may be mediated by the estrogen receptor pathway in primary cultured tilapia hepatocytes. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Halophage SNJ1 was induced with mitomycin C from Natrinema sp. strain F5. The phage produces plaques on Natrinema sp. strain J7 only. The phage has a head of about 67 nm in diameter and a tail of 570 nm in length and belongs morphologically to the family Siphoviridae. The phage is strongly salt dependent; NaCl concentration affects the integrity of SNJ1, phage adsorption, and plaque formation. The optimal NaCl concentration for phage adsorption and plaque formation is 30% and 25%, respectively.