151 resultados para helical-core fiber
Resumo:
A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.
Resumo:
A fiber Bragg grating (FBG) pressure sensor packaged by using a hard core in the membrane is presented. By utilizing the unique membrane-based FBG packagine method, its pressure sensitivity has been effectively enhanced. The pressure sensitivity of the FBG reaches 5.75 X 10(-3)/MPa within the pressure range of 0.0.16 Mpa. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51 1279-1281, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24335
Resumo:
A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A 1.55-mu m single shallow ridge electroabsorptionmodulated distributed feedback laser that is monolithically integrated with a buried-ridge-stripe dual-core spot-size converter (SSC) at the input and output ports was fabricated by combining selective area growth, quantum-well intermixing, and dual-core integration techniques simultaneously. These devices exhibit a threshold current of 34 mA, a side mode suppression ratio of 38.0 dB, a 3-dB modulation bandwidth of 11.0 GHz, and a modulator extinction ratio of 25.0 dB dc. The output beam divergence angles of the SSC in the horizontal and vertical directions are as small as 7.3 degrees x 18 degrees, respectively, resulting in 3.2-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
Exact solutions of Maxwell's equations describing the lightwave through 3-layer-structured cylindrical waveguide are obtained and the mode field diameter and nonlinear coefficient of air-core nanowires (ACNWs) are numerically calculated. The simulation results show that ACNWs offer some unique optical properties, such as tight field confining ability and extremely high nonlinearity. At a certain wavelength and air core radius, we optimize the waveguide design to maximize the nonlinear coefficient and minimize the mode field diameter. Our results show that the ACNWs may be powerful potential tools for novel micro-photonic devices in the near future.
Resumo:
Liquid-filled microstructured polymer optical fibers (MPOFs) as monolithic liquid-core array fiber are proposed and prepared by injecting high-refractive-index liquid into the holes array of the MPOFs. One example for potential applications is demonstrated as a new kind of coherent imaging fiber. It provides great potential for applications in chemical sensing, biosensors, and endoscopy, particularly in bifunctional detection. (C) 2009 Optical Society of America
Tellurium enhanced non-resonant third-order optical nonlinearity in a germano-silicate optical fiber
Resumo:
碲掺杂的高非线性石英光纤
Resumo:
银纳米晶体掺杂的高非线性石英光纤的全光转换应用
Resumo:
A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.
Resumo:
We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America
Resumo:
A highly birefringent hollow-core photonic bandgap fiber based on Topas cyclic olefin copolymer is designed. The rhombic hollow-core with rounded corners is formed by omitting four central air holes of the cladding structure. The guided modes, birefringence and confinement loss of the fiber are investigated by using the full-vector finite element method. A high phase birefringence of the order of 10(-3), a group birefringence of the order of 10(-2) and confinement loss less than 0.1 dB/km are obtained at the central wavelength (1.55 mu m) range of the bandgap for fiber with seven rings of air holes in the cladding region. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Uniform core-sheath nanofibers are prepared by electrospinning a water-in-oil emulsion in which the aqueous phase consists of a poly(ethylene oxide) (PEO) solution in water and the oily phase is a chloroform solution of an amphiphilic poly(ethylene glycol)-poly(L-lactic acid) (PEGPLA) diblock copolymer. The obtained fibers are composed of a PEO core and a PEG-PLA sheath with a sharp boundary in between. By adjusting the emulsion composition and the emulsification parameters, the overall fiber size and the relative diameters of the core and the sheath can be changed. A mechanism is proposed to explain the process of transformation from the emulsion to the core-sheath fibers, i.e., the stretching and evaporation induced de-emulsification. In principle, this process can be applied to other systems to prepare core-sheath fibers in place of concentric electrospinning and it is especially suitable for fabricating composite nanofibers that contain water-soluble drugs.
Resumo:
Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description, damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.
Resumo:
In the present paper, a theoretical model is studied on the flow in the liquid annular film, which is ejected from a vessel with relatively higher temperature and painted on the moving solid fiber. A temperature gradient, driving a thermocapillary flow, is formed on the free surface because of the heat transfer from the liquid with relatively higher temperature to the environmental gas with relatively lower temperature. The thermocapillary flow may change the radii profile of the liquid film. This process analyzed is based on the approximations of lubrication theory and perturbation theory, and the equation of the liquid layer radii and the process of thermal hydrodynamics in the liquid layer are solved for a temperature distribution on the solid fiber.
Resumo:
In this paper, the dynamic behaviors of several kinds of high strength fibers, including Kevlar, UHMPE, glass fibers, carbon fibers etc., are investigated experimentally, with a Split Hopkinson Tension Bar (SHTB). The effect of strain rate on the modulus, strength, failure strain and failure characteristics of fibers, under impact loading, is analyzed with the relative stress vs. strain curves. At the same time, the mechanism about the rate dependence of mechanical behaviors of various fibers is discussed based on the understanding on the microstructures and deformation models of materials. Some comments are also presented on the decentralization of experimental results, and a new method called traveling wave method is presented to increase the experimental accuracy. Research results obtained in this paper will benefit to understand the energy absorption and to build up the constitutive law of protective materials reinforced by high strength fibers.