368 resultados para heavy-ion collisions
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, pion emission in heavy-ion collisions in the region 1 A GeV is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The in-medium dependence and Coulomb effects of pion production are included in the calculation. Total pion multiplicity and pi(-)/pi(+) yields are calculated for the reaction Au-197+(197) Au in central collisions for selected Skyrme parameters SkP, SLy6, Ska, SIII and compared with the measured data of the FOPI collaboration.
Resumo:
Within the hadronic transport model IBUU04, we study the density-dependent symmetry energy by using the neutron-proton differential flow from the Sn-132+Sn-124 reactions at beam energies of 200, 400, 600 and 800MeV per nucleon. The strong effect of the symmetry energy is shown at the incident beam energy of 400 MeV/A. The small medium-effect of the neutron-proton differential flow is also found. We also study the neutron-proton differential flows with impact parameters of 3, 5, 7 fm. It is found that in semi-central collisions the sensitivity of the neutron-proton differential flow to the symmetry energy is larger.
Resumo:
A systematic study of the pi(-)/pi(+) ratio in heavy-ion collisions with the same neutron/proton ratio but different masses can help single out effects of the nuclear mean field on pion production. Based on simulations using the IBUU04 transport model, it is found that the pi(-)/pi(+) ratio in head-on collisions of Ca-48 + Ca-48, Sn-124 + Sn-124, and Au-197 + Au-197 at beam energies from 0.25 to 0.6 GeV/nucleon increases with increasing the system size or decreasing the beam energies. A comprehensive analysis of the dynamical isospin fractionation and the pi(-)/pi(+) ratio as well as their time evolution and spatial distributions demonstrates clearly that the pi(-)/pi(+) ratio is an effective probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.
Resumo:
The nuclear stopping and the radial flow are investigated with an isospin-dependent quantum molecular dynamics (IQMD) model for Ni + Ni and Pb + Pb from 0.4 to and 1.2 GeV/u. The expansion velocity as well as the degree of nuclear stopping are higher in the heavier system at all energies. The ratio between the flow energy and the total available energy in center of mass of the colliding systems exhibits a positive correlation to the degree of nuclear stopping. The maximum density (rho(max)) achieved in the compression is comparable to the hydrodynamics prediction only if the non-zero collision time effect is taken into account in the later. Due to the partial transparency, the growing of the maximum density achieved in the central region of the fireball with the increase of beam energy becomes gradually flat in the 1 GeV/u energy regime. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Using the isospin- and momentum-dependent hadronic transport model 1BUU04, we have investigated the influence of the entrance-channel isospin asymmetry on the sensitivity of the pre-equilibrium neutron/proton ratio to symmetry energy in central heavy-ion collisions induced by high-energy radioactive beams. Our analysis and discussion are based on the dynamical simulations of the three isotopic reaction Systems Sn-132+Sn-124, Sn-124+Sn-112 and Sn-112+(112)Su which are of the same total proton number but, different isospin asymmetry. We find that, the kinetic-energy distributions of the pre-equilibrium neutron/proton ratio are quite sensitive to the density-dependence of symmetry energy at incident beam energy E/A = 400 MeV, and the sensitivity increases as the isospin asymmetry of the reaction system increases.