17 resultados para geographical analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inter-simple sequence repeat markers (ISSR) were used to estimate genetic diversity within and among 10 populations of Rhodiola chrysanthemifolia along Nianqingtangula Mountains and Brahmaputra, a species endemic to the Qinghai-Tibet Plateau and an endangered medicinal plant. Of the 100 primers screened, 13 produced highly polymorphic DNA fragments. Using these primers, 116 discernible DNA fragments were generated of which 104 (89.7%) were polymorphic, indicating substantial genetic diversity at the species level. Genetic diversity measured by the percentage of polymorphic bands (PPB) at the population level ranged from 21.97% to 48.8%. Analysis of molecular variance (AMOVA) showed that the genetic variation was found mainly among populations (77.3%), but no regional differentiation was discernible. Variance within populations was only 22.7%. The main factor responsible for this high level of differentiation among populations is probably the historical geographical and genetic isolation of populations in a harsh mountainous environment. Concerning the management of R. chrysanthemifolia, the high genetic differentiation of populations indicates the necessity of conserving the maximum possible number of populations. (c) 2006 Elsevier Ltd. All rights reserved.