23 resultados para fluorescein


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly repetitive satellite sequence was previously identified in the Pacific oyster Crassostrea gigas Thunberg. The sequence has 168 bp per unit, present in tandem repeats, and accounts for 1% to 4% of the genome. We studied the chromosomal location of this satellite sequence by fluorescence in situ hybridization (FISH), A probe was made by polymerase chain reaction and incorporation of digoxigenin-11-dUTP. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. FISH signals were located at centromeric regions of 7 pairs of the Pacific oyster chromosomes. No interstitial site was found. Signals were strong and consistent on chromosomes 1, 2, 4, and 7, but weak or variable oil chromosomes 5, 8, and 10. No signal was observed on chromosomes 3, 6, and 9. Our results showed that this sequence is clearly a centromeric satellite, disputing its previous assignment to the telomeric and submetacentric regions of 2 chromosomes. No signal was detected in the American oyster (Crassostrea virginica Gmelin).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本研究应用显带技术和荧光原位杂交(Fluorescence in situ hybridization,FISH)技术,鉴定了牡蛎的染色体;应用FISH方法定位了一系列的重复序列和大分子的P1克隆DNA;制备了染色体特异性探针。应用FISH特异性探针成功地鉴定了长牡蛎的三体10。结果如下:1.分析了G带和C带在美洲牡蛎染色体上的分布。G带在每一条染色体上的带型不同,某些染色体间(如第1对和第4对染色体,第7对和第9对染色体)的带型差别不是很明显。G带型容易受染色体收缩程度的影响。C带型重复性较好,染色体带型较清楚,分布在染色体的端粒区域和着丝粒区域。G带和C带带型能够用来鉴定牡蛎的染色体,但是重复性低和带型差异不显著,并不适合常规的染色体鉴定。2.早期胚胎和担轮幼虫制备的染色体适合于FISH分析。染色体制备方法重复性好,可适用于其它贝类的染色体制备。3.研究了重复序列基因--rDNA的定位:1)18S-5.8S rDNA在研究的五种巨蛎属Crassostrea牡蛎均只有一个位 点。太平洋种(C.gigas,C. ariakensis和C. plicatula)中,杂交信号位于最短的染色体一第10对染色体长臂的端粒区域,在大西洋种(C. virginica和C. rhizophorae)中,同一序列定位在第2对染色体短臂的端粒区域。2)18S-28S rDNA在两种蛤中有两个位点。rDNA探针定位在侏儒蛤(Mulinis Lateralis)的第15对和第19对染色体的端粒区域,同一序列定位在硬壳蛤(Mercenaria mercenaria)的第10对染色体的长臂和第12对染色体短臂的端粒区域。信号强度在两对染色体之间有差异。 3)5s rDNA位于美洲牡蛎的第5对染色体的短臂上靠近着丝粒区域和第6 对染色体的短臂的中间区域。信号强度在两对染色体之间没有显著差异。5S rDNA探针可以作为鉴定和识别第5对和第6对染色体的特异性探针。4.研究了一些重复序列的定位1)两个短的重复序列1G8,1P2均产生很强的荧光信号分布在美洲牡蛎所有的染色体上。在低严谨条件下,这些序列均产生很强的信号散布在所有的染色体上。在高严谨条件下,信号强度大大减弱,但是信号仍散布在所有的染色体上。这些重复序列散布在美洲牡蛎的整个基因组中。2)高度重复序列Cgl70产生的信号分布在长牡蛎的7对染色体的着丝粒区域,没有发现间区信号。在第1对,第2对,第4对和第7对染色体上的荧光信号强且稳定。在第5对,第8对和第10对染色体上的信号相对弱且不稳定。在剩余的染色体上(第3对,第6对和第9对染色体)没有检测到荧光信号。结果表明此卫星序列是一个着丝粒卫星序列。在美洲牡蛎的染色体上没有检测到荧光信号,表明了这个着丝粒卫星序列在这两种牡蛎中的分布存在着显著的差异。3)脊椎动物端粒序列(TTAGGG)n的FISH信号局限在四种双壳贝类(美洲牡蛎,the mangrove oyster,硬壳蛤,侏儒蛤)所有染色体的端粒区域,没有发现间区信号的存在。研究结果与已报道的研究结果表明脊椎动物端粒序列或许存在于所有双壳贝类的染色体末端。双壳贝类是目前研究过的唯一含有脊椎动物端粒序列DNA的无脊椎动物。4)研究了RAPD探针在美洲牡蛎染色体上的定位。大多数RAPD探针产生了多个信号散布在间期细胞核和所有的染色体上。引物OPX-03,OPX-04,OPX—06,OPG-02,OPM—04,OPM-11,0PS-02制备的探针在适宜的条件下产生特异性荧光 信号,分布在牡蛎的特定的染色体上。PCR特异性带产生的探针OPX—06—310和0PG-02—300产生了特异性的荧光信号:OPX—06—310产生的信号位于第5对染色体的短臂的近端粒区域,0PG—02—300探针定位到第3对染色体的短臂上。这两个探针是鉴定美洲牡蛎单条染色体的特异性探针。5.研究了大分子Pl克隆DNA(插入片断为80~100 kb)在美洲牡蛎染色体上的定位。Pl克隆DNA通过切口平移方法标记digoxigenin—11-dUTP用作FISH的探针。Cot-1 DNA作为竞争剂有效地抑制了Pl克隆序列中的重复序列产生的信号。杂交信号用fluorescein标记的anti—digoxigenin抗体来检测,用两层抗体rabbit-anti-sheep抗体和FITC anti—rabbit抗体来扩增信号。9个P1探针成功地定位在特定的染色体上。46—1探针杂交到第1对染色体的长臂靠近着丝粒区域;47-10探针定位到第2对染色体的长臂近端粒区域;Cvpl和48-13两探针定位到第3对染色体上:Cvpl位于短臂的端粒区域,48-13探针位于长臂的近着丝粒区域;48—10探针杂交到第4对染色体的长臂上;48-1探针杂交到第5对染色体长臂的近着丝粒区域;49-11探针位于第7对染色体长臂上;探针49-10和44-11位于第8对染色体长臂上。同时我们成功地将2个P1探针杂交到同一染色体分裂相中,进一步确定了Pl探针在美洲牡蛎染色体 上的定位。6.应用18S-28S rDNA探针成功地鉴定出长牡蛎非整倍体中的三体10。经鉴定AF-35,AF-39和AF-3三体家系属于三体10家系。rDNA探针分布在三条染色体上,即多出的一条染色体为染色体10。相应地在间期细胞核上有三个信号出现。AF-34和AF-36家系不属于三体10家系。rDNA探针分布在两条染色体上,相应地在间期细胞核上有两个信号出现。FISH和染色体特异性探针为非整倍体的鉴定提供了一个快速准确可靠的方法和途径。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosome identification is an essential step in genomic research, which so far has not been possible in oysters. We tested bacteriophage P1 clones for chromosomal identification in the eastern oyster Crassostrea virginica, using fluorescence in situ hybridization (FISH). P1 clones were labeled with digoxigenin-11-dUTP using nick translation. Hybridization was detected with fluorescein-isothiocyanate-labeled anti-digoxigenin antibodies and amplified with 2 layers of antibodies. Nine of the 21 P1 clones tested produced clear and consistent FISH signals when Cot-1 DNA was used as a blocking agent against repetitive sequences. Karyotypic analysis and cohybridization positively assigned the 9 P1 clones to 7 chromosomes. The remaining 3 chromosomes can be separated by size and arm ratio. Five of the 9 P1 clones were sequenced at both ends, providing sequence-tagged sites that can be used to integrate linkage and cytogenetic maps. One sequence is part of the bone morphogenetic protein type 1b receptor, a member of the transforming growth factor superfamily, and mapped to the telomeric region of the long arm of chromosome 2. This study shows that large-insert clones such as P1 are useful as chromosome-specific FISH probes and for gene mapping in oysters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosomal location of the 5S ribosomal RNA gene was studied in the eastern oyster, Crassostrea virginica Gmelin. using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos, and the FISH probe was made by PCR (polymerase chain reaction) amplification of the 5S rRNA gene and labeled by incorporation of digoxigenin-1 1-dUTP during PCR. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. Two pairs of FISH signals were observed on metaphase chromosomes. Karyotypic analysis showed that the 5S rRNA gene cluster is interstitially located on short arms of chromosomes 5 and 6. On chromosome 5, the 5S rRNA genes were located immediately next to the centromere, whereas on chromosome 6, they were located approximately half way between the telomere and the centromere. Chromosomes of C. virginica are difficult to identify because of their similarities in size and arm ratio, and the chromosomal location of 5S rRNA genes provides unambiguous identification of chromosomes 5 and 6. Previous studies have mapped the major rRNA gene cluster (18S-5.8S-28S) to chromosome 2. and this study shows that the 5S rRNA gene cluster is not linked to the major rRNA genes and duplicated during evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Karyotype and chromosomal location of the major ribosomal RNA genes were studied in the hard clam (Mercenaria mercenaria Linnaeus) using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos. Internal transcribed spacers (ITS) between major RNA genes were amplified and used as FISH probes. The probes were labeled with digoxigenin-11-dUTP by polymerase chain reaction and detected with fluorescein-labeled anti-digoxigenin antibodies. FISH with the ITS probes produced two to four signals per nucleus or metaphase. M. mercenaria had a haploid number of 19 chromosomes with a karyotype of seven metacentric, four metacentric or submetacentric, seven submetacentric, and one submetacentric or subtelocentric chromosomes (7M + 4M/SM + 7SM + 1SM/ST). Two ITS loci were observed: one located near the centromere on the long arm of Chromosome 10 and the other at the telomere of the short arm of Chromosome 12. FISH signals on Chromosome 10 are strong and consistent, while signals on Chromosome 12 are variable. This study provides the first karyotype and chromosomal assignment of the major RNA genes in M. mercenaria. Similar studies in a wide range of species are needed to understand the role of chromosomal changes in bivalve evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosomal location of the major ribosomal RNA genes (rRNA) were studied in the dwarf surfclam (Mulinia lateralis, Say) using fluorescence in situ hybridization (FISH). FISH probes for the rRNA genes were made by polymerase chain reaction (PCR), labeled with digoxigenin-11-dUTP and detected with fluorescein-labeled antidigoxigenin antibodies. Mulinia lateralis had a diploid number of 38 chromosomes and all chromosomes were telocentric. FISH with the rRNA probe produced positive and consistent signals on two pairs of chromosomes: Chromosome 15 with a relative length of 4.6% and Chromosome 19, the shortest chromosome. Both loci were telomeric. The rRNA location provides the first physical landmark of the M. lateralis genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel fluorescence detector based on collinear scheme using a brightness light-emitting diode emitting at 470 nm as excitation source is described. The detector is assembled by all-solid-state optical-electronic components and Coupled with capillary electrophoresis using on-column detection mode. Fluorescein isothiocyanate (FITC) and FITC-labeled amino acids and small molecule peptide as test analyte were used to evaluate the detector. The concentration limit of detection for FITC-labeled phenylalanine was 10 nM at a signal-to-noise ratio (S/N) of 3. The system exhibited good linear responses in the range of 1 x 10(-7) to 2 x 10(-5) M (R-2 = 0.999). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined detection system of simultaneous contactless conductometric and fluorescent detection for capillary electrophoresis (CE) has been designed and evaluated. The two processes share a common detection cell. A blue light-emitting diode (LED) was used as the excitation source and an optical fiber was used to collect the emitting fluorescence for fluorescent detection (FD). Inorganic ions, fluorescein isothiocyanate (FITC)-labeled amino acids and small molecule peptides were separated and detected by the combined detector, and the detection limits (LODs) of sub-μ M level were achieved.