23 resultados para ethoexperimental neuroscience
Resumo:
BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill groups. At 2 days following model induction, rats in the Naotan Pill group were administered Naotan Pill suspension for 21 days. In the model and sham operation groups, rats received an equal volume of saline. MAIN OUTCOME MEASURES: Neural cell morphology was observed using an inverted phase contrast microscope. Survival rate of neural cells was measured by MTT assay. Synaptophysin and choline acetyl transferase expression was observed in the hippocampal CA1 region of juvenile rats using immunohistochemistry. Cognitive function was tested by the Morris water maze. RESULTS: Pathological changes were detected in glutamate-treated neural cells. Neural cell morphology remained normal after Naotan Pill intervention. Absorbance and survival rate of neural cells were significantly greater following Naotan Pill intervention, compared to glutamate-treated neural cells (P < 0.05). Synaptophysin and choline acetyl transferase expression was lowest in the hippocampal CA1 region in the model group and highest in the sham operation group. Significant differences among groups were observed (P < 0.05). Escape latency and swimming distance were significantly longer in the model group compared to the Naotan Pill group (P < 0.05). CONCLUSION: Naotan Pill exhibited protective and repair effects on glutamate-treated neural cells. Naotan Pill upregulated synaptophysin and choline acetyl transferase expression in the hippocampus and improved cognitive function in rats following hypoxia-ischemia.
Resumo:
根据心理物理学、神经生理学、认知神经学等学科在视觉认知领域的部分研究成果,结合机器视觉、图像处理领域在图像增强方面已经提出的一些方法,提出了结合先验知识的多窗口结构下的分块中值滤波方法,在每一个窗口内单独进行处理与分析,突出了视觉处理目的,减少了运算量, 节省数据存储空间,达到了令人满意的滤波效果,能够在原始图像比较复杂的情况下,较好地对其进行预处理,可以改善、提高后期图像处理过程,如图像分割、图像分析的正确性和有效性。
Resumo:
Rewarding experience after drug use is one of the mechanisms of substance abuse. Previous evidence indicated that rewarding experience was closely related to learning processes. Neuroscience studies have already established multiple-mode learning model. Reference memory system and habit memory are associated with hippocampus and dorsa striatum respectively, which are also involved in the rewarding effect of morphine. However, the relationship between spatial/habit learning and morphine reward property is still unclear. After drug use, with sensitization to rewarding effect, spatial learning is also changed. To study the mechanism of increment of spatial learning would provide new perspective about reward learning. Based on the individual difference between spatial learning and reward learning, the experiments studied relationship between the two leaning abilities and tested the function of dorsal hippocampus and dorsal striatum in morphine-induced CPP. The results were summarized below: 1 In a single-rule learning water maze task, subjects better in spatial learning also excelled in rewarding learning. In a multi-rule learning task, morphine administration was more rewarding to subjects of use place strategy. 2 Treatment potentiating the rewarding effect of morphine also increased place-rule learning, with no significant improvement in habit learning. 3 Intracranial injections into CA1 of hippocampus or dorsal striatum of M1 antagonist, Pirenzepine, could block the establishment of morphine CPP after three days morphine treatment. In contrast, the antagonist of D1 receptor SCH23390 had no blocking effect. Both Pirenzepine and SCH23390 blocked the locomotor-stimulating effect of morphine. In summary, spatial learning stimulated the behavioral expression of morphine’s rewarding effect, in which CA1 of hippocampus was critically involved. On the other side, a pretreatment schedule of morphine, while increased the rewarding effect, improved place-rule learning, indicating that spatial learning might be one chain of sensitization to drug rewards effects
Resumo:
The cognition and memory functions of the Basal Ganglia have been the focus of contemporary cognitive neuroscience researches. This study, from neuroanatomical and neurophysiological point of view, thoroughly surveyed the recent relevant research progress, carefully examined the evidences of the neurological basis for the Basal Ganglia possessing or participating cognition or memory functions. Moreover, it reviewed recent achievements on the cognitive functions of the basal ganglia based on researches on rodent animals, primate animals and human beings. Then it presented a series of experiments conducted, by neuropsychological and cognitive psychological methods, on neurological patients with focal lesions to the basal ganglia or combining with bilateral hippocampus or thalamus impaired to explore what the role of the basal ganglia play in human explicit and implicit memory. It was found that the lesions to the basal ganglia partially handicapped explicit verbal memory and completely impaired perceptual priming. It was also found that right cerebral cortex dysplasia but basal ganglia spared had no effects on priming tasks performances. The results suggested that the basal ganglia contain or accommodate higher cognitive functions and further suggested that priming be irrelevant to right cerebral cortex. It was posited that the basal ganglia, on the basis of interaction with prefrontal or temporal cortices, mediate movement function as well as cognition and memory functions.