140 resultados para electrosynthesis hydrotalcite pH-sensor structured catalystcatalytic partial oxidation
Resumo:
By characterizing fresh and used Mo/HMCM-22 catalysts with ICP-AES, XRD, NH3-TPD technique, UV - Vis DRS and UV Raman spectroscopy, the reactivity of Mo species for methane partial oxidation into formaldehyde were directly studied with a new point of view. By comparing the fresh and used catalysts, it was found that the tetrahedral Mo species bonding chemically to the support surface were practically unchanged after the reaction, while the polymolybdate octahedral Mo species, which had a rather weak interaction with the MCM-22 zeolite, leached out during the reaction, especially when the Mo loading was high. Correspondingly, it was found from the time-on-stream reaction data that the HCHO yield remained unchanged, while COx decreased with the reaction time during the reaction. By combining the characterization results and the reaction data, it can be drawn that the isolated tetrahedral molybdenum oxo-species (T-d) is responsible for HCHO formation, while the octahedral polyoxomolybdate species (O-h) will lead to the total oxidation of methane.
Resumo:
Partial oxidation of n-heptane (POH) for hydrogen generation was studied over several catalysts between 700 and 850degreesC. Modified Ni-based/gamma-Al2O3 catalyst exhibited not only good catalytic activity but also good carbon deposition resistance ability. Under the modified reaction conditions, 100% n-heptane conversion and 93% hydrogen selectivity can be obtained.
Resumo:
Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)(3)(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)(3)(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)(3)(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.
Resumo:
The pH-sensitive property of the single-wall carbon nanotube modified electrode based oil the electroactive group on the single-wall carbon nanotube was explored by differential pulse voltammetry technique. In pH range 1-13 investigated in Britton-Robinson (B-R) buffer, the anodic peak shifted negatively along with the increase of pH exhibiting a reversible Nernstian response. Experiments were carried out to investigate the response of the single-wall carbon nanotube (SWNT) modified electrode to analytes associated with pH change. The response behavior of the modified electrode to ammonia was studied as an example. The potential response could reach equilibrium within 5 min. The modified electrode had good operational stability. Voltammetric urease and acetylcholinesterase biosensors were constructed by immobilizing the enzymes with sol-get hybrid material. The maximum potential shift could reach 0.130 and 0.220V for urea and acetylthiocholine, respectively. The methods for preparing sensor and biosensor were simple and reproducible and the range of analytes could be extended to substrates of other hydrolyases and esterases.
Resumo:
A phenolphthalein immobilized cellulose membrane for an optical pH sensor was described. The phenolphthalein was first reacted with the formaldehyde to produce a series of prepolymers with many hydroxymethyl groups. In this paper, the prepolymers was abbreviated to phenolphthalein-formaldehyde (PPF). Then the PPF was covalently immobilized to the diacetylcellulose membrane via hydroxymethyl groups. Finally the membrane was hydrolyzed in the 0.1 M NaOH solution for 24 h to reduce the response time. Advantageous features of the pH-sensitive membrane include (a) a large dynamic range from pH 8.0 to 12.50, or even broader, (b) rapid response time (2-30 s), (c) easy of fabrication, and (d) a promising material for determination of high pH values. The immobilized PPF has a broader dynamic range from 8.0 to 12.50 than the free phenolphthalein from pH 8.0 to 11.0, and this was due to the newly produced methylenes in our investigation.
Resumo:
The ceria modified Pt/CeO2/Al2O3 and Pt/Al2O3 catalysts were studied in the partial oxidation of methane to syngas. The SEM, XRD, TPR and TPD techniques were used for the catalyst characterization. The addition of ceria could enhance the Pt dispersion and decrease the Pt crystallise size; the activity and selectivity of catalyst for partial oxidation were improved significantly, and the methane total oxidation was suppressed sharply. The ceria effect was also discussed in a detailed way.
Resumo:
The catalytic partial oxidation of methane to syngas over Ni/Al2O3, Pt/Al2O3 and a series of Pt - Ni/Al2O3 catalysts was investigated. It was found that Pt - Ni/Al2O3 catalysts exhibit higher activity and stability than Ni/Al2O3 and Pt/Al2O3. TPR and TPD methods were used to characterize Pt - Ni bimetallic interactions in the catalysts. A series of Pt - Ni/Al2O3 catalysts and unsupported Pt - Ni samples were studied by XRD and XPS. It was found the formation of Pt - Ni alloy in the Pt - Ni/Al2O3 catalysts and the enrichment of platinum on the surface of the catalysts. It is concluded that the higher activity and stability of Pt - Ni/Al2O3 catalysts were caused by Pt - Ni bimetallic interactions.
Resumo:
The catalytic oxidation of methane to syngas has been carried out over Pt/Al2O3 and Pt/CeO2/Al2O3. It was found that the catalysts with ceria exhibit a higher activity and selectivity than those without ceria. The catalysts were characterized by means of TPR, TPD, SEM-EDX and XRD. There is a strong interaction between ceria and platinum under the reaction condition, which increase the dispersion of platinum over catalysts, preventing the sinter of the Pt particles. As a result of the synergistic;effect between Pt and ceria, the activity of Pt/Al2O3 for combustion reaction was suppressed, the activity and selectivity :For partial oxidation were improved greatly. Another role of ceria in the catalyst is the enhancing of the WGSR, which leads to the increase of the selectivity of catalyst for hydrogen and accelerating the equilibrium of the reaction.
Resumo:
Hydrotalcite-like compounds (HTLcs): CoMAlCO3-HTLcs (M=Cu2+, Ni2+, Mn2+, Cr3+, Fe3+), were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs and their calcined products were studied in the p-cresol oxidation, and the effects of the temperature of HTLcs calcination, the ratio of Co/Cu, different promoters, reaction temperatures and reaction times on reaction activities were investigated. It has been found that calcined HTLcs have higher activity than uncalcined samples and mechanical mixed oxides in this reaction. The best yield was obtained from the CoCuAlCO3-HTLc (Co/Cu/Al=3:1:1) calcined at 450 degrees C. A tentative reaction mechanism was also proposed. (C) 1998 Elsevier Science B.V.