194 resultados para electronic records
Resumo:
To investigate the occupational exposure levels to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs), indoor dust (n = 3) in workshops and hair samples from male workers (n = 64) were collected at two electrical and electronic equipment waste (E-waste) dismantling factories located in the LQ area in east China in July 11-13, 2006. Pre- and postworkshift urines (64 of each) were also collected from the workers to study oxidative damage to DNA using 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker. The concentrations of PCDD/Fs, PCDD/F-WHO-TEQs, PBDEs, PCBs and PCB-WHO-TEQs were (50.0 +/- 8.1) x 10(3), 724.1 +/- 249.6, (27.5 +/- 5.8) x 10(6), (1.6 +/- 0.4) x 10(9), (26.2 +/- 3.0) x 10(3) pg/g dry weight (dw) in dust, and (2.6 +/- 0.6) x 10(3), 42.4 +/- 9.3, (870.8 +/- 205.4) x 10(3), (1.6 +/- 0.2) x 10(6), 41.5 +/- 5.5 pg/g dw in hair, respectively. The homologue and congener profiles in the samples demonstrated that high concentrations of PCDD/Fs, PBDEs, and PCBs were originated from open burning of E-waste. The 8-OHdG levels were detected at 6.40 +/- 1.64 mu mol/mol creatinine in preworkshift urines. However, the levels significantly increased to 24.55 +/- 5.96 mu mol/mol creatinine in postworkshift urines (p < 0.05). Then, it is concluded that there is a high cancer risk originated from oxidative stress indicated by the elevated 8-OHdG levels in the E-waste dismantling workers exposed to high concentrations of PCDD/Fs, PBDEs, and PCBs.
Resumo:
This study is one of the very few investigating the dioxin body burden of a group of child-bearing-aged women at an electronic waste (e-waste) recycling site (Taizhou, Zhejiang Province) (24 +/- 2.83 years of age, 40% were primiparae) and a reference site (Lin'an city, Zhejiang Province, about 245 km away from Taizhou) (24 +/- 2.35 years of age, 100% were primiparae) in China. Five sets of samples (each set consisted of human milk, placenta, and hair) were collected from each site. Body burdens of people from the e-waste processing site (human milk, 21.02 +/- 13.81 pg WHO-TEQ(1998/g) fat (World Health Organization toxic equivalency 1998); placenta, 31.15 +/- 15.67 pg WHO-TEQ(1998/g) fat; hair, 33.82 +/- 17.74 pg WHO-TEQ(1998/g) dry wt) showed significantly higher levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurnas (PCDD/Fs) than those from the reference site (human milk, 9.35 +/- 7.39 pg WHO-TEQ(1998/g) fat, placenta, 11.91 +/- 7.05 pg WHO-TEQ(1998/g) fat; hair, 5.59 +/- 4.36 pg WHO-TEQ(1998/g) dry wt) and were comparatively higher than other studies. The difference between the two sites was due to e-waste recycling operations, for example, open burning, which led to high background levels. Moreover, mothers from the e-waste recycling site consumed more foods of animal origin. The estimated daily intake of PCDD/Fs within 6 months by breast-fed infants from the e-waste processing site was 2 times higher than that from the reference site. Both values exceeded the WHO tolerable daily intake for adults by at least 25 and 11 times, respectively. Our results implicated that e-waste recycling operations cause prominent PCDD/F levels in the environment and in humans. The elevated body burden may have health implications for the next generation.
Resumo:
Three lacustrine core samples were collected from Chaohu lake in December 2002 in the Yangtze delta region. The grain sizes were analyzed using a Laser Analyzer to obtain grain-size parameters. Sediment geochronology was determined in radioisotopes Cs-137 and the average sedimentary rates are 0.29cm.a(-1), 0.35 cm.a(-1) and 0.24cm-a(-1) in Cores C 1, C2 and C3, respectively. The grain-size parameters of the deposits vary regularly with the fluctuation of hydrodynamics. From 1950s to the beginning of 20th century, coarse-grained sediment was deposited, suggesting strong hydraulic conditions and high water-level periods with much precipitation; from the start of 20(th) century to latter half of 18(th) century, fine-grained sediment was deposited, indicating that weak hydraulic conditions and low water-level periods with less precipitation; before the first half of 18(th) century, coarse-grained sediment was deposited, suggesting great velocity of flow and high water-level periods of more precipitation.
Resumo:
Samples of groundwater, river water, river sediment, paddy soil, rice seeds, hen eggs, fish, umbilical cord blood, and newborn meconium were collected from October 2002 to October 2003 near a large site in China used for the disassembly of obsolete transformers and other electronic or electrical waste. Six indicator PCB congeners, three non-ortho dioxin-like PCB congeners, and six organochlorine pesticides were determined in the samples by GC with electron capture detector. The results demonstrated that the local environment and edible foods had been seriously polluted by toxic PCBs and organochlorine pesticides. The actual daily intakes (ADIs) of these pollutants were estimated for local residents living in the area. The intake data showed that the contents of PCBs in these local residents were substantial, as the ADI estimates greatly exceed the reference doses set by the World Health Organization and the United States Agency for Toxic Substances and Disease Registry. The presence of the indicator PCB congeners in the cord blood and the meconium samples, as well as significant correlations (r(2) > 0.80, p < 0.05) between these levels, suggests a potential biotransfer of these indicators from mothers to their newborns. This preliminary study showed that obsolete transformers and other electronic or electrical waste can be an important source for the emission of persistent organic pollutants into the local environment, such as through leakage, evaporation, runoff, and leaching. Contamination from this source appears to have reached the level considered to be a serious threat to environmental and human health around the disassembly site.
Resumo:
Eleven species of terrestrial and aquatic Enchytraeidae are reported from southeastern China. Fridericia multisegmentata and Enchytraeus athecatus are new to science, while most of the others are recorded from the country for the first time.
Resumo:
On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.
Resumo:
First-principles calculations; ZnO nanofilms; Electronic properties; Quantum effects; NANOBELTS; NANORINGS; WURTZITE; ENERGY Abstract: Using first-principles density-functional calculations, we have studied the structural and electronic properties Of Ultrathin ZnO {0001} nanofilms. The structural parameters, the charge densities, band structures and density of states have been investigated. The results show that there are remarkable charge transfers from Zn to O atoms in the ZOO nanofilms. All the ZOO nanofilms exhibit direct wide band gaps compared with bulk counterpart, and the gap decreases with increased thickness of the nanofilms. The decreased band gap is associated with the weaker ionic bonding within layers and the less localization of electrons in thicker films. A staircase-like density of states occurs at the bottom of conduction band, indicating the two-dimensional quantum effects in ZnO nanofilms.
Resumo:
We perform first-principles calculations of the structural, electronic, mechanical, and thermodynamic properties of thorium hydrides (ThH2 and Th4H15) based on the density functional theory with generalized gradient approximation. The equilibrium geometries, the total and partial densities of states, charge density, elastic constants, elastic moduli, Poisson's ratio, and phonon dispersion curves for these materials are systematically investigated and analyzed in comparison with experiments and previous calculations. These results show that our calculated equilibrium structural parameters are well consistent with experiments. The Th-H bonds in all thorium hydrides exhibit weak covalent character, but the ionic properties for ThH2 and Th4H15 are different due to their different hydrogen concentration. It is found that while in ThH2 about 1.5 electrons transfer from each Th atom to H, in Th4H15 the charge transfer from each Th atom is around 2.1 electrons. Our calculated phonon spectrum for the stable body-centered tetragonal phase of ThH2 accords well with experiments. In addition we show that ThH2 in the fluorite phase is mechanically and dynamically unstable.
Resumo:
The configurations, stability, and electronic structure of AuSin (n = 1-16) clusters have been investigated within the framework of the density functional theory at the B3PW91/LanL2DZ and PW91/DNP levels. The results show that the Au atom begins to occupy the interior site for cages as small as Si-11 and for Si-12 the Au atom completely falls into the interior site forming Au@Si-12 cage. A relatively large embedding energy and small HOMO-LUMO gap are also found for this Au@Si-12 structure indicating enhanced chemical activity and good electronic transfer properties. All these make Au@Si-12 attractive for cluster-assembled materials.
Resumo:
Using the density function theory within the generalized gradient approximation, the band structures of wurtzite ZnO, BeO and MgO have been calculated. The effective-mass parameters are fitted using the calculated eigenvalues. The Dresselhaus spin-orbit effect appears in the k[1 00] direction, and is zero in the high symmetry direction k[00 1]. The orderings of valence band split by the crystal-field and spin-orbit coupling in wurtzite ZnO, BeO and MgO are identified by analyzing the wave function characters calculated by projecting the wave functions onto p-state in the spherical harmonics. For wurtzite ZnO, the ordering of valence band is Still Gamma(7) > Gamma(9) > Gamma(7) due to the negative spin-orbit coupling splitting energy and the positive crystal-field splitting energy. Thus, the Thomas' conclusion is confirmed. For wurtzite BeO and MgO, although their orderings of valence bands are Gamma(7) > Gamma(9) > Gamma(7) too, the origins of their orderings are different from that of wurtzite ZnO. Zn1-x,YxO (Y = Mg, Be) doped with N and P atoms have been studied using first-principles method. The calculated results show that N atom doped in Zn1-x BexO has more shallow acceptor energy level with increasing the concentration of Be atom. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]
Resumo:
Calculations of the electronic structure and the density of states of GaN with Mn are carried out by means of first-principles plane-wave pesudopotential method based on density functional theory. The results reveal a 100% spin polarized impurity band in band structure of Ga1-xMnxN due to hybridization of Mn 3d and N 2p orbitals. The material is half metallic and suited for spin injectors. In addition, a peak of refractive index can be observed near the energy gap. The absorption coefficient increases in the UV region with the increase of the Mn content.
Resumo:
In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy levels are sensitively dependent on the TSQR's section thickness d, and insensitively dependent on TSQR's section inner radius R-1 and TSQR's inner radius R-2. The model and results provide useful information for the design and fabrication of InAs/GaAs TSQRs.
Resumo:
We have theoretically investigated the energy band structures of two typical magnetic superlattices formed by perpendicular or parallel magnetization ferromagnetic stripes periodically deposited on a two-dimensional electron gas (2DEG), where the magnetic profile in the perpendicular magnetization is of inversion anti-symmetry, but of inversion symmetry in parallel magnetization, respectively. We have shown that the energy bands of perpendicular magnetization display the spin-splitting and transverse wave-vector symmetry, while the energy bands of the parallel magnetization exhibit spin degeneration and transverse wave-vector asymmetry. These distinguishing spin-dependent and transverse wave-vector asymmetry features are essential for future spintronics devices applications. (c) 2008 Elsevier B.V. All rights reserved.