30 resultados para domestic safety
Resumo:
Investigating the development of Eustrongylides ignotus in its definitive host would enable us to trace the complete life cycle of this nematode. Fourth-stage larvae isolated from naturally infected swamp eels (Monopterus albus) were used to infect domestic ducks (Anas platyrhynchos domestica [L.]). We observed that male and female worms exhibited different developmental patterns in host ducks. In males, the fourth molt occurred at day 1-2 post-infection (PI), after which they attained maturity on day 4 PI and died between day 7 and 9 PI. However, females underwent the fourth molt at day 2-4 PI, produced eggs from day 9 to 17 PI, and then degenerated and died. When compared 10 fourth-stage Female larvae, adult females demonstrated a considerable increase in total body size with a 151% increase in average body width and a 17% increase in average body length. However. the increase in size of the male larvae was not its significant as that in females. The average body width in adult males exhibited only a 45% increase over that in the larval stage.
Resumo:
Oxidative stress response after prolonged exposure to a low dose of microcystins (MCs) was studied in liver, kidney and brain of domestic rabbits. Rabbits were treated with extracted MCs (mainly MC-LR and MC-RR) at a dose of 2 MC-LReq. mu g/kg body weight or saline solution every 24 h for 7 or 14 days. During the exposure of MCs, increase of lipid peroxidation (LPO) levels were detected in all the organs studied, while antioxidant enzymes responded differently among different organs. The enzyme activities Of Superoxide dismutase (SOD). catalase (CAT) and glutathione reductase (GR) in liver decreased in the MCs treated animals. In brain, there were obvious changes in glutathione peroxidase (GPx) and GR, while only CAT was obviously influenced in kidney. Therefore, daily exposure at a lower dosage of MCs, which mimicked a natural route of MCs. could also induce obvious oxidative stress in diverse organs of domestic rabbits. The oxidative stress induced by MCs in brain was as serious as in liver and kidney, suggesting that brain may also be a target of MCs in mammals. And it seems that animals may have more time to metabolize the toxins or to form an adaptive response to reduce the adverse effects when exposed to the low dose of MCs. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.
Resumo:
Although common carp is the major fish species in Asian and European aquaculture and many domestic varieties have occurred, there is a controversy about the origination of European domestic common carp. Some scientists affirmed that the ancestor of European domestic common carp was Danube River wild common carp, but others considered it might be Asian common carp. For elucidating origination of European domestic common carp, we chose two representative European domestic common carp strains (German mirror carp and Russian scattered scaled mirror carp) and one wild common carp strain of Cyprinus carpio carpio subspecies (Volga River wild common carp) and two Asian common carp strains, the Yangtze River wild common carp (Cyprinus carpio haematopterus) and traditionally domestic Xingguo red common carp, as experimental materials. ND5-ND6 and D-loop segments of mitochondrial DNA were amplified by polymerase chain reaction and analyzed through restriction fragment length polymorphism (RFLP) and sequencing respectively. The results revealed that HaeIII and DdeI digestion patterns of ND5-ND6 segment and sequences of control region were different between European subspecies C. carpio carpio and Asian subspecies C. carpio haematopterus. Phylogenetic analysis showed that German mirror carp and Russian scattered scaled mirror carp belonged to two subspecies, C. carpio carpio and C. carpio haematopterus, respectively. Therefore, there were different ancestors for domestic carp in Europe: German mirror carp was domesticated from European subspecies C. carpio carpio and Russian scattered scaled mirror carp originated from Asian subspecies C. carpio haematopterus.
Resumo:
Eight kinds of plants were tested in channel-dyke and field irrigation systems. The removal rates of TP, phosphate, TN, ammonia, CODcr and BOD, in the channel-dyke system with napiergrass (Pennisetum purpurem Schumach, x Pennisetum alopecuroides (L.) Spreng American) were 83.2, 82.3, 76.3, 96.2, 73.5 and 85.8%, respectively. The field irrigation systems with rice I-yuanyou No.1(88-132) (Oryza sativa L.) and rice II- suakoko8 (Oryza glaberrima) had high efficiency for N removal; the removal rate were 84.7 and 84.3%, respectively. The mass balance data revealed that napiergrass, rice I and II were the most important nutrient sinks, assimilating more than 50% of TP and TN. Plant uptake of N and P as percentage of total removal from wastewater correlated with biomass yield of and planting mode. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Background: The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions.Results: The domestic yak populations had two deeply divergent phylogenetic groups with a divergence time of > 100,000 yrs BP. We here show that haplotypes clustering with two deeply divergent maternal lineages in domesticated yaks occur in a single, small, wild population. This finding suggests that all domestic yaks are derived from a single wild gene pool. However, there is no clear correlation of the mtDNA phylogenetic clades and the 10 morphological types of sampled yaks indicating that the latter diversified recently. Relatively high diversity was found in Qinghai and Tibet around the current wild distribution, in accordance with previous suggestions that the earliest domestications occurred in this region. Conventional molecular clock estimation led to an unrealistic early dating of the start of the domestication. However, Bayesian estimation of the coalescence time allowing a relaxation of the mutation rateConclusion: The information gathered here and the previous studies of other animals show that the demographic histories of domestication of livestock species were highly diverse despite the common general feature of deeply divergent maternal lineages. The results further suggest that domestication of local wild prey ungulate animals was a common occurrence during the development of human civilization following the postglacial colonization in different locations of the world, including the high, arid Qinghai-Tibetan Plateau.
Resumo:
Adaptation to hypoxia is regulated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor consisting of an oxygen-regulated a-subunit and a constitutively expressed beta-subunit. How animals living on Qinghai-Tibetan plateau adapt to the extreme hypoxia environment is known indistinctly. In this study, the Qinghai yak which has been living at 3000-5000 m attitude for at least two millions of years was selected as the model of high hypoxia-tolerant adaptation species. The HIF-1 alpha ORFs (open reading frames) encoding for two isoforms of HIF-1 alpha have been cloned from the brain of the domestic yak. Its expression of HIF-1 alpha was analyzed at both mRNA and protein levels in various tissues. Both its HIF-1 alpha mRNA and protein are tissue specific expression. Its HIF-1 alpha protein's high expression in the brain, lung, and kidney showed us that HIF-1 alpha protein may play an important role in the adaptation to hypoxia environment. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Reported are the results of the Latin American Collaborative Study of Congenital Malformations (ECLAMC), a hospital-based case-control study of 34 293 malformed and 34 477 matched nonmalformed newborn controls. No statistical differences were found between the malformed and control groups, exposed or not exposed to tetanus toroid.
Resumo:
The anchorages are unparalleled structures only in a suspension bridge, and as main bearing facilities, play an important role in connecting the superstructures and the ground. The tunnel anchorage, as one alternative type of the anchorages, has more advantages over its counterpart, the gravity anchorage. With the tunnel anchorages adopted, not only can surface excavation be reduced to protect the environment, and natural condition of the rock be utilized and potential bearing capacity of surrounding rock be mobilized to save engineering cost, but also the technological predominance of auxiliary engineering measures, such as prestressed concrete, anchoring piles, rock anchors and collar beam between the two separated anchorages, can be easily cooperated to work together harmoniously under the circumstances of poor rock quality. There are plentiful high mountains and deep canyons in west part of China, and long-span bridge construction is inevitably encountered in order to realize leapfrogging development of the transportation infrastructure. Western mountainous areas usually possess the conditions for constructing tunnel anchorages, and therefore, the tunnel anchorages, which are conformed to the conception of resource conservative and sustainable society, extremely have application and popularization value in western underdeveloped region. The scientific and technological problem about the design, construction and operation of tunnel anchorages should be further investigated. Combining the engineering of western tunnel anchorages for the Balinghe Suspension Bridge, this paper probed into the survey method and in-situ test method for tunnel anchorages, scientific rock quality evaluation of surrounding rock to provide reasonable physical and mechanical parameters for design, construction and operation of tunnel anchorages, bearing capacity estimation for tunnel anchorage, deformation prediction of the anchorage-rockmass system, tunnel-anchorage slope stability analysis and the evaluation of excavation stability and degree of safety of the anchorage tunnel. The following outcomes were obtained: 1. Materials of tunnel anchorages of suspension bridge built (and in progress) at home and abroad were systematically sorted out, with the engineering geological condition and geomechanical property of surrounding rock around the anchorage tunnel, the design size of anchorages and the construction method of anchorage tunnel paid more emphasis on, to unveil the internal relationship between the engineering geological conditions of surrounding rock and the design size and axis angle of anchorages and provide references for future design, construction and study of tunnel anchorages. 2. Physical and mechanical parameters were recommended based on three domestic and foreign methods of rock quality evaluation. 3. In-situ tests, adopting the back-thrust method, of two kinds of reduced scale model, 1/30 and 1/20, for the tunnel anchorages were conducted in the declining exploration drift with rock mass at the test depth being the same as surrounding rock around real anchorages, and reliable field rockmass displacement data were acquired. Attenuation relation between the increment of distance from the anchorage and the decrement of rockmass displacement under maximum test load, and influential scope suffered by anchorage load were obtained. 4. Using similarity theory, the magnitude of real anchorage and rockmass displacement under design load and degree of safety of the anchorage system were deduced. Furthermore, inversion analysis to deformation modulus of slightly weathered dolomite rock, the surrounding rock of anchorage tunnel, was performed by the means of numerical simulation. 5. The influential law of the geometrical size to the limit bearing capacity of tunnel anchorage was studied. 6. Based on engineering geological survey data, accounting for the combination of strata layer and adverse discontinuities, the failure patterns of tunnel anchorage slope were divided into three modes: sliding of splay saddle pier slope, superficial-layer slippage, and deep-layer slippage. Using virtual work principle and taking anchorage load in account, the stability of the three kinds of failure patterns were analyzed in detail. 7. The step-by-step excavation of anchorage tunnel, the numerical overload and the staged decrement of rock strength parameters were numerically simulated to evaluate the excavation stability of surrounding rock around anchorage tunnel, the overload performance of tunnel anchorage, and the safety margin of strength parameters of the surrounding rock.
Resumo:
A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.