352 resultados para diode-end-pumped
Resumo:
A simple cw mode-locked solid-state laser, which is end-pumped by a low-power laser diode, was demonstrated by optimizing the laser-mode size inside the gain medium. The optimum ratio between mode and pump spot sizes inside the laser crystal was estimated for a cw mode-locked laser, taking into account the input pump power. Calculation and experiment have shown that the optimum ratio was about 3 when the pump power is 2 W, which is different from the value regularly used in passively mode-locked solid-state lasers. This conclusion is also helpful in increasing the efficiency of high-power ultrashort lasers. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
By employing a continuous-wave (CW) Ti:sapphire tunable laser as a pumping source and a Cr4+:YAG single crystal as the saturable absorber (SA), a passively Q-switched Nd:YAG ceramic laser has been demonstrated at room temperature. With an absorbed pumping power of 541 mW at 808 nm, an average output power of 61 mW at 1064 nm has been obtained with 3.5 mu J pulse energy, 15 ns pulse width and 18.18 kHz repetition rate, and the corresponding slope-efficiency is 15%. The relationships between the pulse width, repetition rate, average output power, pulse energy, and peak power on the absorbed pumping power for different initial transmission of the Cr4+:YAG SA are discussed separately. The Nd:YAG ceramic is one of the most promising laser materials for compact, efficient, all-solid-state pulsed lasers.
Resumo:
We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6W was obtained with an optical -to- optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M-2 beam quality factor of 18.7 was obtained at the maximum laser output power. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The Ho:YAP crystal is grown by the Czochralski technique. The room-temperature polarized absorption spectra of Ho:YAP crystal was measured on a c-cut sample with 1 at% holmium. According to the obtained Judd-Ofelt intensity parameters Omega(2) = 1.42 x 10(-20) cm(2), Omega(4) = 2.92 x 10(-20) cm(2), and Omega(6) = 1.71 x 10(-20) cm(2), this paper calculated the fluorescence lifetime to be 6 ms for I-5(7) -> I-5(8) transition, and the integrated emission cross section to be 2.24 x 10(-18) cm(2). It investigates the room-temperature Ho:YAP laser end-pumped by a 1.91-mu m Tm:YLF laser. The maximum output power was 4.1 W when the incident 1.91-mu m pump power was 14.4W. The slope efficiency is 40.8%, corresponding to an optical-to-optical conversion efficiency of 28.4%. The Ho:YAP output wavelength was centred at 2118 nm with full width at half maximum of about 0.8 nm.
Resumo:
A fundamental mode Nd YAG laser is experimentally demonstrated with a stagger pumped laser module and a special resonator. The rod is pumped symmetrically by staggered bar modules. A dynamic fundamental mode is achieved with the special resonator under different pump levels. A maximal continuous wave output of 61 W (M-2 = 1.4) is achieved with a single rod. An average output of 47 W, pulse width of 54 ns, pulse energy of 4.7 mJ and peak power of 87 kW are obtained under the Q-switched operation of 10 kHz.
Resumo:
研究了国产Yb:YAG陶瓷的激光输出特性。激光器采用激光二极管(LD)纵向同轴抽运Yb:YAG陶瓷样品,样品的掺杂原子数分数为1%,一端面镀940 nm和1030 nm双增透膜,另一端面镀1030 nm增透膜,激光器在1031 nm处获得了近红外激光输出。实验中分别测试了Yb:YAG陶瓷在不同输出透射率(T=4%,8%,10%)条件下的激光输出特性。整个实验过程中,激光器维持基横模运转。当输出透射率为10%,吸收的抽运功率为9 W时,激光器获得最大的激光输出功率为1.63 W,相应的斜率效率为23.2%。
Resumo:
由于a轴切割Nd∶YVO4晶体的非对称性,使得激光二极管(LD)端面抽运Nd∶YVO4固体激光器不同于Nd∶YAG激光器,输出的激光经常产生非对称结果。用有限元法分析激光二极管端面抽运a轴切割Nd∶YVO4固体激光器的晶体热效应,包括温度分布、内部应力和产生的形变。分析结果表明端面抽运a轴切割Nd∶YVO4晶体产生了椭球热透镜效应。从结构方面和抽运方面提出了热透镜非对称性的平衡方法,实验验证了方法的可行性。
Resumo:
Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive-index (Nb2O5/SiO2) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio ( PER) of 61: 1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58: 1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity. (C) 2008 Optical Society of America.