18 resultados para diatom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

N isotope fractionation (epsilon) was first determined during ambient NO3- depletion in a simulated diatom spring bloom. After 48 h of N-starvation, NH4+ was resupplied to the diatoms in small pulses to simulate grazer-produced N and then epsilon was determined. Large variations in epsilon values were observed: from 2.0-3.6 to 14-0 parts per thousand during NO3- and NH4+ uptake, respectively. This is the first study reporting an epsilon value as low as 0 to 2 parts per thousand for NH4+ uptake and we suggest that greater N demand after N-starvation may have drastically reduced NH3 efflux out of the cells. Thus the N status of the phytoplankton and not the ambient NH4+ concentration may be the important factor controlling epsilon, because, when N-starvation increased, epsilon values for NH4+ uptake decreased within 30 h. This study may thus have important implications for interpreting the delta(15)N of particulate N in nutrient-depleted regimes in temperate coastal oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diatom flora in a 164 cm long sediment core obtained from Jiaozhou Bay (Yellow Sea, China) was analyzed in order to trace the response of diatoms to environmental changes over the past 100 years. The sediment core was dated by Pb-210 and Cs-137 and represented approximately 100 years (1899-2001 A.D.). The flora was mainly composed of centric diatoms (59-96%). The concentration of diatoms declined sharply above 30 cm (after similar to 1981 A.D.), while the dominant species changed from Thalassiosira anguste-lineatus, Thalassiosira eccentria, Coscinodiscus excentricus, Coscinodiscus concinnus and Diploneis gorjanovici to Cyclotella stylorum and Paralia sulcata. Species richness decreased slightly, and the cell abundance of warm-water species increased. We argue that these floral changes were probably caused by climate change in combination with eutrophication resulting from aquaculture and sewage discharge. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ludox-QPS method is a newly developed technique, which combines the Ludox HS 40 density centrifugation and quantitative protargol stain, to enumerate marine ciliates with good taxonomic resolution. We tested the method for simultaneous enumeration of diatoms, protozoa and meiobenthos and compared its extraction efficiency for meiobenthos with that of the routine Ludox-TM centrifugation and a modified protocol using Ludox HS 40. We conducted the evaluation with a sample size of 8.3 ml each from sandy, muddy-sand and muddy sediments collected from the intertidal area of the Yellow Sea in summer 2006 and spring 2007. The Ludox-QPS method not only produced high extraction efficiencies of 97 +/- 1.3% for diatoms and 97.6 +/- 0.8% for ciliates, indicating a reliable enumeration for eukaryotic microbenthos, but also produced excellent extraction efficiencies of on average 97.3% for total meiobenthos, 97.9% for nematodes and 97.8% for copepods from sands, muddy sands and mud. By contrast, the routine Ludox-TM centrifugation obtained only about 74% of total meiobenthos abundance with one extraction cycle, and the modified Ludox HS 40 centrifugation yielded on average 93% of total meiobenthos: 89.4 +/- 2.0% from sands, 93 +/- 4.1% from muddy sands and 97.1 +/- 3.0% from mud. Apart from the sediment type, sample volume was another important factor affecting the extraction efficiency for meiobenthos. The extraction rate was increased to about 96.4% when using the same modified Ludox centrifugation for a 4 ml sediment sample. Besides the excellent extraction efficiency, the Ludox-QPS method obtained higher abundances of meiobenthos, in particular nematodes, than the routine Ludox centrifugation, which frequently resulted in an uncertain loss of small meiobenthos during the sieving process. Statistical analyses demonstrated that there were no significant differences between the meiobenthos communities revealed by the Ludox-QPS method and the modified Ludox HS 40 centrifugation, showing the high efficiency of the Ludox-QPS method for simultaneous enumeration of diatom, protozoa and meiobenthos. Moreover, the comparatively high taxonomic resolution of the method, especially for diatoms and ciliates, makes it feasible to investigate microbial ecology at community level.