236 resultados para delay reduction
Resumo:
Aims: Repeated exposure to heroin, a typical opiate, causes neuronal adaptation and may result in anatomical changes in specific brain regions, particularly the frontal and limbic cortices. The volume changes of gray matter (GM) of these brain regions, ho
Resumo:
Extract of Ginkgo biloba is used to alleviate age-related decline in cognitive function, which may be associated with the loss of catecholamines in the prefrontal cortex. The purpose of this study was to verify whether alpha-2 adrenergic activity is involved in the facilitative effects of extract of Ginkgo biloba on prefrontal cognitive function. Male Wistar rats were trained to reach criterion in the delayed alternation task (0, 25, and 50-s delay intervals). A pilot study found that 3 or 4 mg/kg of yohimbine (intraperitoneal) reduced the choice accuracy of the delayed alternation task in a dose and delay-dependent manner, without influencing motor ability or perseverative behaviour. Acute oral pre-treatment with doses of 50, 100, or 200 mg/kg (but not 25 mg/kg) of extract of Ginkgo biloba prevented the reduction in choice accuracy induced by 4 mg/kg yohimbine. These data suggest that the prefrontal cognition-enhancing effects of extract of Ginkgo biloba are related to its actions on alpha-2-adrenoceptors.
Resumo:
Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
It is studied whether there is any regular relationship between the yellow luminescence band and electron mobility of n-type GaN. For a series of GaN samples grown with the same Si doping, it is found that the electron mobility decreases with an increase of relative intensity of yellow luminescence, accompanied by an increase of edge dislocation density. Further research indicates that it is acceptors introduced by edge dislocations which lead to the concomitant changes of yellow luminescence and electron mobility. Similar changes are induced by Si doping in the n-type GaN samples with relatively low edge dislocation density. However, the relationship between the yellow luminescence and electron mobility of n-type GaN is not a simple one. A light Si doping may simultaneously increase yellow luminescence and electron mobility when Si doping plays a dominant role in reducing the carrier scattering. This means that even the intensity of yellow luminescence is often used as an indicator of material quality for GaN, it does not have any monotonous correlation with the electron mobility of GaN. (c) 2007 American Institute of Physics.
Resumo:
With consideration of the modulation frequency of the input lightwave itself, we present a new model to calculate the quantum efficiency of RCE p-i-n photodetectors (PD) by superimposition of multiple reflected lightwaves. For the first time, the optical delay, another important factor limiting the electrical bandwidth of RCE p-i-n PD excluding the transit time of the carriers and RCd response of the photodetector, is analyzed and discussed in detail. The optical delay dominates the bandwidth of RCE p-i-n PD when its active layer is thinner than several 10 nm. These three limiting factors must be considered exactly for design of ultra-high-speed RCE p-i-n PD.
Resumo:
The Pade approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Pade approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Pade approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Pade approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials. (C) 2009 Optical Society of America
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study describes the growth of a low-temperature AlN interlayer for crack-free GaN growth on Si(111). It is demonstrated that, in addition to the lower growth temperature, growth of the AlN interlayer under Al-rich conditions is a critical factor for crack-free GaN growth on Si(111) substrates. The effect of the AlN interlayer thickness and NH3/TMA1 ratios on the lattice constants of subsequently grown high temperature GaN was investigated by X-ray triple crystal diffraction. The results show that the elimination of micro-cracks is related to the reduction of the tensile stress in the GaN epitaxial layers. This was also coincident with a greater number of pits formed in the AlN interlayer grown under Al rich conditions. It is proposed that these pits act as centers for the generation of misfit dislocations, which in turn leads to the reduction of tensile stress. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effect of rapid thermal annealing on the InAs quantum dots (QDs) grown by atomic layer molecular beam epitaxy and capped with InGaAs layer has been investigated using transmission electron microscopy and photoluminescence (PL). Different from the previously reported results, no obvious blueshift of the PL emission of QDs is observed until the annealing temperature increases up to 800 degreesC. The size and shape of the QDs annealed at 750 degreesC have hardly changed indicating the relatively weak Ga/In interdiffusion, which is characterized by little blueshift of the PL peak of QDs. The QD size increases largely and a few large clusters can be observed after 800 degreesC RTA, implying the fast interdiffusion and the formation of InGaAs QDs. These results indicate that the delay of the blueshift of the PL peak of QDs is correlated with the abnormal interdiffusion process, which can be explained by two possible reasons: the reduction of excess-As-induced defects and the redistribution of In, Ga atoms around the InAs QDs resulted from the sub-monolayer deposition of InGaAs capping layer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an two weighted neural network approach to determine the delay time for a heating, ventilating and air-conditioning (HVAC) plan to respond to control actions. The two weighted neural network is a fully connected four-layer network. An acceleration technique was used to improve the General Delta Rule for the learning process. Experimental data for heating and cooling modes were used with both the two weighted neural network and a traditional mathematical method to determine the delay time. The results show that two weighted neural networks can be used effectively determining the delay time for AVAC systems.