38 resultados para curve spline, interpolazione, Comb, qualità
Resumo:
The rule of current change was studied during capillary electrophoresis (CE) separation process while the conductivity of the sample solution was different from that of the buffer. Using a quadratic spline wavelet of compact support, the wavelet transforms (WTs) of capillary electrophoretic currents were performed. The time corresponding to the maximum of WT coefficients was chosen as the time of current inflection to calculate electroosmotic mobility. The proposed method was suitable for different CE modes, including capillary zone electrophoresis, nonaqueous CE and micellar electrokinctic chromatography. Compared with the neutral marker method, the relative errors of the developed method for the determination of electroosmotic mobility were all below 2.5%. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This study examines the link between the economic growth and the environmental quality. Based on a panel data set, a N-shaped Environmental Kuzents Curve has been found for the sample period: a cubic relationship between per capita GDP and emissions of sulphur dioxide (SO2). We also find that energy consumption is an important determinant of environmental degradation. The empirical results suggest that we should promote environmental protection as soon as possible.
Resumo:
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.
Resumo:
Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.
Resumo:
A comb-like polymer host(CBPE) as polymer electrolyte was synthesized by reacting poly(ethylene glycol) monomethyl ether (PEGME) with ethylene-maleic anhydride copolymer(EMAC) and endcapping the residual carboxylic acid with methanol. The synthetic process was followed by IR and the amorphous product characterized by IR and elemental analysis. There were two peaks in the plot of the ionic conductivity against Li salt concentration. The plot of log sigma vs. 1/(T - T-0) may exhibit dual VTF behavior when using the glass transition temperature of PEO of side chain as T-0. The comb-like polymer is a white rubbery solid which dissolves in acetone. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The thermal behaviour and ion-transport properties of a comb polymer electrolyte CP350/LiSCN based on methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains were studied by means of DSC and ac impedance method. The two glass transition temperatures which can be attributed to side chains and main chains respectively were found to increase with increasing salt concentration. Conductivities which displayed non-Arrhenius behaviour were analyzed by using Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model derived by Gibbs and coworkers. The optimum ionic conductivity at 25 degrees C achieved was 2.19x10(-5)S/cm.
Resumo:
A comb polymer (CP350) with oligo-oxyethylene side chains of the type -(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly(ethylene glycol) methyl ether. The polymer can dissolve LiNO3 salt to form homogeneous amorphous polymer electrolyte. This electrolyte system was first found to have two class glass transitions, and the two T(g)s were observed to increase with increasing salt content. The ionic conduction was measured by using the complex impedance method, and conductivities were investigated as functions of temperature and salt concentration. At 25 degrees C, the ionic conductivity maximum of this system can get to 3.72 X 10(-5) S/cm at the [Li]/ [EO] ratio of 0.057. The appearance of the conductivity maximum has been interpreted as being due to the effect of T-g and the so called physical crosslinks. The temperature dependence of the ionic conductivity displaying non-Arrhenius behaviour can be analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model.
Resumo:
Three comb polymers(CP) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were prepared from methyl vinyl ether/maleic anhydride alternating copolymer. Homogeneous amorphous polymer electrolytes were made from CP and LiCF3SO3 or LiClO4 by solvent-casting method, and their conductivities were measured as a function of temperature and salt concentration. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation. The conductivity maximum appears at lower salt concentration when CP has longer side chains. XPS was used to study the cation-polymer interaction.