118 resultados para coiled-coil
Resumo:
利用三维CFD技术,通过求解层流Navier-stokes方程与组分输运方程,对简化后的化学氧碘激光RADICL模型进行数值模拟与分析,结合10种组分和21个基元反应的化学反应模型,对COIL亚声速段横向射流情况下,不同的主副流流量配比对化学氧碘激光器性能的影响进行分析与比较.结果证明,过高或过低的碘分子浓度状态均不利于合理、可观的小信号增益系数产生.存在一个最佳流量配比范围,与之对应的工作状态下,COIL的小信号增益系数会得到显著提高.
Resumo:
应用CFD技术,发展三维多组分化学反应流计算程序,对采用超声速段射流方式的氧碘化学激光进行数值模拟,考察分解率与增益等参考变量的详细三维分布.计算结果说明,超声速区域的高速流动以及混合效率降低使COIL无法在有限空间内完成整个运转流程;提高碘含量以加快反应速度的手段导致主流无法提供足够的载能介质,无法形成合理增益.在不改变喷管长度的前提下,提出主流无载气方式的探索,结果证明了超声速段射流方式采用无载气主流配置的可行性与优势,通过减小气流速度保证混合与化学反应在光腔上游完成,在合理的流量配比下光腔位置处可得到1.3%cm-1的增益峰值
Resumo:
A 2-kW-class chemical oxygen-iodine laser (COIL) using nitrogen buffer gas has been developed and tested since industrial applications of COIL devices will require the use of nitrogen as the buffer gas. The laser, with a gain length of 11.7 cm, is energized by a square pipe-array jet-type singlet oxygen generator (SPJSOG) and employs a nozzle bank with a designed Mach number of 2.5. The SPJSOG has advantages over the traditional plate-type JSOG in that it has less requirements on basic hydrogen peroxide (BHP) pump, and more important, it has much better operational stability. The SPJSOG without a cold trap and a gas-liquid separator could provide reliable operations for a total gas flow rate up to 450 mmol/s and with a low liquid driving pressure of around 0.7 atm or even lower. The nozzle bank was specially designed for a COIL using nitrogen as the buffer gas. The cavity was designed for a Mach number of 2.5, in order to provide a gas speed and static temperature in the cavity similar to that for a traditional COIL with helium buffer gas and a Mach 2 nozzle. An output power of 2.6 kW was obtained for a chlorine flow rate of 140 mmol/s, corresponding to a chemical efficiency of 20.4%. When the chlorine flow rate was reduced to 115 mmol/s, a higher chemical efficiency of 22.7% was attained. Measurements showed that the SPJSOG during normal operation could provide a singlet oxygen yield Y greater than or equal to 55%, a chlorine utilization U greater than or equal to 85%, and a relative water vapor concentration w = [H2O]/([O-2] + [Cl-2]) less than or equal to 0.1.
Resumo:
Self-assembled behavior of rod-terminally tethered three-armed star-shaped coil block copolymer melts was studied by applying self-consistent-field lattice techniques in three-dimensional (3D) space. Similar to rod-coil diblock copolymers, five morphologies were observed, i.e., lamellar, perforated lamellar, gyroidlike, cylindrical and sphericallike structures, while the distribution of the morphologies in the phase diagram was dramatically changed with respect to that Of rod-coil diblock copolymers.
Resumo:
Self-assembled behavior of symmetric ABA rod-coil-rod triblock copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. The phase diagram is constructed to understand the effects of the chain architecture on the self-assembled behavior. Four stable structures are observed for the ABA rod-coil-rod triblock, i.e., spherelike, lamellar, gyroidlike, and cylindrical structures. Different from AB rod-coil diblock and BAB coil-rod-coil triblock copolymers, the lamellar structure observed in ABA rod-coil-rod triblock copolymer melts is not stable for high volume fraction of the rod component (f(rod)=0.8), which is attributed to the intramolecular interactions between the two rod blocks of the polymer chain.
Resumo:
The amphiphilic PEG1 500-b-EM AP-b-PEG1 500 (EM PAP) triblock copolymer of poly(ethylene glycol) (PEG) and emeraldine aniline-pentamer (EM AP) in its concentrated solution can self-assemble into a special shape like "sandglass", as observed by transmission electron microscopy (TEM), field emission scanning electron microscopy (ESEM) and atomic force microscopy (AFM). This "sandglass"- shaped assembly is composed of several "rods" aggregated in the middle, with every "rod" being about 8 VLrn in length and 300 nm in diameter.
Resumo:
A series of coil-rod-coil triblock copolymers (i.e., F3T8EO8, F3T8EO17, F3T8EO45, and F3T8EO125) with a mesogenic monodisperse conjugated oligomer comprising 3 fluorene, 8 thiophene, and 2 phenyl units as the rod and poly(ethylene oxide) (PEO) as the coil were synthesized. A reference compound, that is F3T8ME2, with the identical rod but without PEO was also prepared for comparison. The volume fraction of PEO (f(PEO)) was 0, 0.16, 0.28, 0.50, and 0.73 for F3T8ME2, F3T8EO8, F3T8EO17, F3T8EO45, and F3T8EO125, respectively. It was found that the introduction of PEO into the triblock copolymers encouraged the formation of H-type aggregation and f(PEO)-dependent highly ordered mesophases while f(PEO) < 0.73. For F3T8ME2, only nematic mesophase was observed. In contrast, F3T8EO8 and F3T8EO17, with f(PEO) of 0.16 and 0.28, respectively, are smectic A (SA) mesomorphism.
Resumo:
Self-assembled behavior of T-shaped rod-coil block copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. Compared with rod-coil diblock copolymers with the anchor point positioned at one end, the copolymers with the anchor point at the middle of the rod exhibit significantly different phase behaviors. When the rod volume fraction is low, the steric hindrance of the lateral coils prevents the rods stacking into strip or micelle as that in rod-coil diblock copolymers. The competition between interfacial energy and entropy results in the formation of lamellar structures and the increasing thickness of the lamellar layer with increasing rod volume fraction.