55 resultados para bayes theorem
Resumo:
We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.
Resumo:
Optical properties of a two-dimensional square-lattice photonic crystal are systematically investigated within the partial bandgap through anisotropic characteristics analysis and numerical simulation of field pattern. Using the plane-wave expansion method and Hellmann-Feynman theorem, the relationships between the incident and refracted angles for both phase and group velocities are calculated to analyze light propagation from air to photonic crystals. Three kinds of flat slab focusing are summarized and demonstrated by numerical simulations using the multiple scattering method. (c) 2007 Optical Society of America
Resumo:
Amblycipitidae Day, 1873 is an Asian family of catfishes (Siluriformes) usually considered to contain 28 species placed in three genera: Amblyceps (14 spp.), Liobagrus (12 spp.) and Xiurenbagrus (2 spp.). Morphology-based systematics has supported the monophyly of this family, with some authors placing Amblycipitidae within a larger group including Akysidae, Sisoridae and Aspredinidae, termed the Sisoroidea. Here we investigate the phylogenetic relationships among four species of Amblyceps, six species of Liobagrus and the two species of Xiurenbagrus with respect to other sisoroid taxa as well as other catfish groups using 6100 aligned base pairs of DNA sequence data from the rag1 and rag2 genes of the nuclear genome and from three regions (cyt b, COL ND4 plus tRNA-His and tRNA-Ser) of the mitochondrial genome. Parsimony and Bayesian analyses of the data indicate strong support for a diphyletic Amblycipitidae in which the genus Amblyceps is the sister group to the Sisoridae and a clade formed by genera Liobagrus and Xiurenbagrus is the sister group to Akysidae. These taxa together form a well supported monophyletic group that assembles all Asian sisoroid taxa, but excludes the South American Aspredinidae. Results for aspredinids are consistent with previous molecular studies that indicate these catfishes are not sisoroids, but the sister group to the South American doradoid catfishes (Auchenipteridae + Doradidae). The redefined sisoroid clade plus Bagridae, Horabagridae and (Ailia + Laides) make up a larger monophyletic group informally termed "Big Asia." Likelihood-based SH tests and Bayes Factor comparisons of the rag and the mitochondrial data partitions considered separately and combined reject both the hypothesis of amblycipitid monophyly and the hypothesis of aspredinid inclusion within Sisoroidea. This result for amblycipitids conflicts with a number of well documented morphological synapomorphies that we briefly review. Possible nomenclatural changes for amblycipitid taxa are noted.
Resumo:
Spatially-resolved electroluminescence (EL) images from solar cells contain information of local current distribution. By theoretical analysis of the EL intensity distribution, the current density distribution under a certain current bias and the sheet resistance can be obtained quantitatively. Two-dimensional numerical simulation of the current density distribution is employed to a GaInP cell, which agrees very well with the experimental results. A reciprocity theorem for current spreading is found and used to interpret the EL images from the viewpoint of current extraction. The optimization of front electrodes is discussed based on the results. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431390]
Resumo:
A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.
Resumo:
In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.
Resumo:
Motivated by the design and development challenges of the BART case study, an approach for developing and analyzing a formal model for reactive systems is presented. The approach makes use of a domain specific language for specifying control algorithms able to satisfy competing properties such as safety and optimality. The domain language, called SPC, offers several key abstractions such as the state, the profile, and the constraint to facilitate problem specification. Using a high-level program transformation system such as HATS being developed at the University of Nebraska at Omaha, specifications in this modelling language can be transformed to ML code. The resulting executable specification can be further refined by applying generic transformations to the abstractions provided by the domain language. Problem dependent transformations utilizing the domain specific knowledge and properties may also be applied. The result is a significantly more efficient implementation which can be used for simulation and gaining deeper insight into design decisions and various control policies. The correctness of transformations can be established using a rewrite-rule based induction theorem prover Rewrite Rule Laboratory developed at the University of New Mexico.
Resumo:
The propositional mu-calculus is a propositional logic of programs which incorporates a least fixpoint operator and subsumes the propositional dynamic logic of Fischer and Ladner, the infinite looping construct of Streett, and the game logic of Parikh. We give an elementary time decision procedure, using a reduction to the emptiness problem for automata on infinite trees. A small model theorem is obtained as a corollary.
Resumo:
The need to make default assumptions is frequently encountered in reasoning about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non-monotonicity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occuring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Resumo:
This paper deals withmodel generation for equational theories, i.e., automatically generating (finite) models of a given set of (logical) equations. Our method of finite model generation and a tool for automatic construction of finite algebras is described. Some examples are given to show the applications of our program. We argue that, the combination of model generators and theorem provers enables us to get a better understanding of logical theories. A brief comparison between our tool and other similar tools is also presented.
Resumo:
由于Eu~(2+)离子在不同复合氟化物中存在不同的跃迁发射形式,主要有5d → 4f的宽带跃迁,位于365nm-650nm间和4f → 4f的窄带跃迁,中心位置在360nm附近。Eu~(2+)离子的跃迁形式决定于基质的化学组成。本工作就是用多种模式识别方法(KNN,ALKNN,BAYES,LLM,SIMCA和PCA)研究不同复合氟化物基质中Eu~(2+)离子的跃迁发射形式和基质晶体结构之间的关系,找出Eu~(2+)离子产生f → f跃迁其基质构成的一般规律性。收集了90个复合氟化物(AB_mF_n)作为样本集,根据其中Eu~(2+)离子跃迁形式的不同将它们分成两类,一类为具有f → f跃迁的基质45个;另一类为不具有f → f跃迁的基质45个。随机地选用63个基质作为训练集,其余的为验证集。每个基质样本利用其12个晶体结构参数作为描述。由于各参数间差别不大,对原始数据未进行标度化。特征提取是模式识别分析的一个重要步骤,本工作结合变化权重法,BAYES特征量评价法和SIMCA变量相关性评价法的特点,建立了一个以验评价判据式:d(i) = -5.0 + 2.3V(i) + 0.89f(i) + 7.2W(i)根据经验式,选取了变量Z_B/r_(kB),r_(covA)/r_(covB)和Z_B/r_(covB),并删除了变量Xσ_A,Xσ_B,r_(covA)。其它变量由于其D值接近,利用穷举法对它们进行选取,结果M,Z'_A和r_(covB)被选中。这样把这6个被选的变量作为对跃迁发射问题最相关的变量进行进一步分析。采用被选的6维变量对训练集样本施行主成份分析,结果表示前三个主成份已可解释原数据信息量的99%以上。所以分别以主成份1-3及主成份1和主成份3作了三维和二维的映射图。结果表示两类基质样本基本上分在不同区域。进一步分别用12维和6维变量对样本系进行了其它几种模式识别分析。所有这些方法对训练集的分类效果都比较理想。采取6维特征时,其正确分类率达79.4-96.8%,这说明与跃迁问题相关的大部分变量已被选入。但是结果显示,各种方法对训练集的分类有一定的差别。我们认为这是由于各种不同的方法对数据结构要求不同引起的。实验证明Bayes线性判别方法对该样本集数据的分类效果最佳。根据Bayes线性差别方法的执行得到了对基质样本分类模式,由此模式讨论了各结构参数对Eu~(2+)离子光谱结构的影响,并对七个未知基质中Eu~(2+)离子的光谱结构进行了计算机预报,结果表示KTbF_4,KBF_4,NaIn_2F_7和KLu_2F_7为具有f → f跃迁发射的基质,而NaCaF_3,MgBeF_4和MgAlF_5为不具有f → f跃迁发射的基质。
Resumo:
It is rigorously proved that the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field is diagonal with respect to single-particle states in the Landau gauge. The implication of this theorem is briefly discussed.
Resumo:
The propagation characteristics of fiexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The fiexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.