157 resultados para ammonium glufosinate
Resumo:
Here we prepare carbon nanotubes modified with ammonium persulfate, very short carbon nanotubes with 50-100 nanometer length was obtained, and the higher P potential of 52 mV was detected, these supporting the successful modification. HeLa cells were irradiated with P rays via adding or absent above functionalized carbon nanotubes (f- WCNTs) into cell culture medium with different concentration and radiation dosage. Confocal microscopy images and fluorescence-labeled DNA detection verified the successfully pure multi-walled carbon nanotubes (p-WCNTs) and f-WCNTs penetrated into cells. Compared with pure radiation, by MTT test, f-WCNTs induced cell death markedly with about 8.7 times higher than former one under little dose of radiation; meanwhile, no obvious toxicity was observed both in p-WCNTs and f-WCNTs without of radiation exposure. We hypothesized that large amount of hydroxyl and carbonyl organs on the surface of very short f-WCNTs changed into free radicals result from radiations led cell damage. These implied that f-WCNTs could be regarded as a new radiosensitizer.
Resumo:
A new quaternary ammonium heteropolyoxotungstant (cat.C) is prepared and characterized. And the cat.C also is an reaction-controlled phase-transfer catalyst. The catalytic system of O-2/EAHQ (2-ethylanthrahydroquinone)/cat.c is used for the epoxidation of propylene. Under the optimal conditions, the yield of propylene oxide based on EAHQ is 84.1%, the selectivity for propylene oxide based on propylene is 99.8% and the conversion of propylene based on EAHQ is 84.3%. The cat.c precipitates after the epoxidation reaction for easy separation. The cat. C is stable enough to be recycled three times without any loss in selectivity.
Resumo:
Langmuir-Blodgett (LB) films of octadecylammonium octadecanoate (C(18)H(37)j7NH(3)(+)C(17)H(35)COO(-),ODASA) and octadecylammonium octadecanoate-d(35) (C18H37+NH3+C17D35COO-, ODASA-d(53)) were prepared and their thermal behaviors were investigated by variable-temperature Fourier transform infrared transmission spectroscopy. It was found that the two hydrocarbon chains of ODASA molecule in LB films are highly ordered while that protonated (H) chain in ODASA-d(35) is partially disordered with some gauche conformers introduced at room temperature.
Resumo:
Chloro( 5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide ( Et4NBr) in combination with bulky Lewis acid was used for the copolymerization of CO2 and cyclohexene oxide ( CHO). Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands, like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity, the corresponding turnover frequency reached 44.9 h(-1) in 9 h, which was 23.8% higher than that from ( TPP)AlCl/Et4NBr binary catalyst. The resulting polycarbonate has carbonate linkage over 93% with number average molecular weight of ( 4.5-6.5) x 10(3) and polydispersity index below 1.10.
Resumo:
A new strategy for preparing ammonium-type ionic liquid (IL) by acid/base neutralization reaction was proposed. The method contributed to preparing hydroxide-based ammonium IL and resulting task specific ionic liquid (TSIL) with high purity using a low-costly and environment-friendly synthetic. route. Halide contamination in the prepared ILs could be markedly decreased than those prepared by well-established anion metathesis method. Moreover, some novel TSILs composed of cations and anions with big steric hindrances could be prepared by this method. Physicochemical properties of the bifunctional TSILs, i.e., density, water content, decomposition temperature, and munal solubility, were also studied in this article.
Resumo:
A new bisphenol monomer, 2,2'-dimethylaminemetllylene-4,4'-biphenol (DABP), was easily prepared by Mannich reaction of dimethylamine and formaldehyde with 4,4'-biphenol. Novel partially fluorinated poly(arylene ether sulfone)s with pendant quaternary ammonium groups were prepared by copolymerization of DABP, 4,4'-biphenol, and 3,3',4,4'- tetrafluorodiphenylsulfone, followed by reaction with iodomethane. The resulting copolymers PSQNI-x (where x represents the molar fraction of DABP in the feed) with high molecular weight exhibited outstanding solubility in polar aprotic solvents; thus, the flexible and tough membranes of PSQNI-x with varying ionic content could be prepared by casting from the DMAc solution. Novel anion exchange membranes, PSQNOH-x, were obtained by an anion exchange of PSQNI-x with 1 N NaOH.
Resumo:
A series of silica-based organic–inorganic hybrid materials were prepared by the sol–gel process for Cr(III) and Cr(VI) adsorption. These silica materials generally had high surface areas, good physical–chemical stability and high thermal stability. Trialkylmethylammonium bis 2,4,4-trimethylpentylphosphinate ([A336][C272]) and trihexyl(tetradecyl)phosphonium bis 2,4,4-trimethylpentylphosphinate (Cyphos IL 104) were explored as porogens to prepare porous silica and as extractants to extract chromium ions. Cyphos IL 104 and [A336][C272] functionalized silica sorbents (SG-2, SG-5) can be effectively used for the removal of Cr(III) and Cr(VI) from aqueous solutions by adjusting pH values, whereas trialkylmethylammonium chloride (Aliquat 336) and bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) functionalized silica sorbents (SG-3, SG-4) can only be used for the removal of the single chromium species, Cr(VI) or Cr(III).
Resumo:
Chiral quaternary ammonium salts derived from cinchonidine have been applied to catalyze the stereoselective iodolactonizations of trans-5-aryl-4-pentenoic acids leading to a mixture of two regioselectively iodolactonized products with fair to excellent yield (37-98%) and moderate enantioselectivity (exo = 42.0% ee, endo = 31.0% ee) under mild conditions. This work is the first example of asymmetric iodolactonization reaction in the presence of less than a stoichiometric amount of chiral reagent.
Resumo:
Dispersion copolymerization of acrylamide (AM) with 2-methylacryloylxyethyl trimethyl ammonium chloride (DMC) has been carried out in aqueous salts solution containing ammonium sulfate and sodium chloride with poly(acryloylxyethyl trimethyl ammonium chloride) (PDAC) as the stabilizer and 2,2'-azobis[2-(2-inidazolin-2-yl)propane]-dihydro chloride (VA-044) as the initiator. A new particle formation mechanism of the dispersion polymerization for the present system has been proposed. The effects of inorganic salts and stabilizer concentration on dispersion polymerization have been investigated. The results show that varying the salt concentration could affect the morphology and molecular weight of the resultant copolymer particles significantly. With increasing the stabilizer concentration, the particle size decreased at first and then increased, meanwhile the effect on the copolymer molecular weight was the contrary. These results had been rationalized based on the proposed mechanism.
Resumo:
Dispersion copolymerization of acrylamide with acrylic acid in an aqueous solution of ammonium sulfate using poly(2-acrylamido-2-methylpropanesulfonic acid sodium) as the stabilizer and ammonium persulfate (APS) as the initiator was investigated. The influence of initiator concentration, stabilizer concentration, ammonium sulfate concentration, chain-transfer agent concentration, and polymerization temperature on the copolymerization was discussed. The results showed that varying the ammonium sulfate concentration could affect the particle size and the intrinsic viscosity of the copolymer significantly. With increasing the stabilizer concentration, the particle size of the copolymer decreased first, and then increased, meanwhile the intrinsic viscosity of the copolymer decreased. The increase of initiator concentration, chain-transfer agent concentration, and polymerization temperature resulted in the increase in the particle size. Polydisperse spherical particles were formed in the system, and the kinetics for the dispersion copolymerization were discussed.
Resumo:
In the crystal structure of the title compound, (NH4)[AsO2 (OH)(C6H4NO2)], the 4-nitrophenylarsonate anions and ammonium cations are linked through hydrogen bonds to form infinite chains along the b axis. The hydroxyl O atom of the 4-nitrophenylarsonate anion acts as both an acceptor and a donor of hydrogen bonds. All atoms are located in general positions.