239 resultados para alpaca fibers
Resumo:
The upconversion properties of Er3+/Yb3+ codoped tellurite glasses and glass fibers with D-shape cladding under 980 mu excitation were investigated. Intense emission bands centered at 531, 546 and 658 nm corresponding to the transitions Er3+: H-2(11/2) -> I-4(15/2) , S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. Compared with that in Er3+/Yb3+ codoped tellurite bulk glass, the upconversion luminescence becomes more efficient in the fiber geometry. The dependence of upconversion intensities on fiber geometry and possible upconversion mechanism are discussed and evaluated. The presented Er3+/Yb3+ codoped tellurite fibers with intense upconversion luminescence can be used as potential host materials for upconversion fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Cladding band structure of air-guiding photonic crystal fibers with high air-filling fraction is calculated in terms of fiber shape variation. The fundamental photonic band gap dependence on structure parameters, air-filling fraction and spacing, is also investigated. The numerical results show that the band gap edges shift toward longer wavelength as the air-filling fraction is increased, whereas the relative band gap width increases linearly. For a fixed air-filling fraction, the band gap edges with respect to spacing keep constant. With this method, the simulation results agree well with the reported data. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The characteristics of the cladding band structure of air-core photonic crystal fibers with silica rings in triangular lattice are investigated by using a standard plane wave method. The numerical results show that light can be localized in the air core by the photonic band gaps of the fiber. By increasing the air-filling fraction, the band gap edges of the low frequency photonic band gaps shift to shorter wavelength.. whereas the band gap width decreases linearly. In order to make a specified light fall in the low frequency band gaps of the fiber, the interplay of the silica ring spacing and the air-filling fraction is also analyzed. It shows that the silica ring spacing increases monotonously when the air-filling fraction is increased, and the spacing range increases exponentially. This type fiber might have potential in infrared light transmission. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel sol-gel method is applied for the preparation of solid-phase microextraction (SPME) fibers. Scanning electron microscopy experiments suggested a porous structure for the poly(dimethylsiloxane) (PDMS) coating. SPME-GC analysis provided evidence that the sol-gel fibers have some advantages, such as high thermal stability, efficient extraction rates, high velocities of mass transfer, and spacious range of application.
Resumo:
Based on the modified dual core structure, three kinds of special photonic crystal fibers are presented, which are extremely large negative dispersion, super-broad bond, and large area made field dispersion-compensating photonic crystal fibers (DCPCF). For extremely large negative dispersion DCPCF, the peak of negative dispersion reaches -5.9 x 10(4) ps/(mn km). Super-broad bond DCPCF has broadband large negative dispersion and the dispersion value varies linearly from -380 ps/(nm km) to -420 ps/(nm km) in the C band. The designed large area made field DCPCF has a peak dispersion of -1203 ps/(nm km) with the inner core mode area of 47 mu m(2) and outer core mode area of 835 mu m(2). Furthermore, for the large area mode field DCPCF, the experimental result is also obtained. (C) 2008 Wiley Periodicals, Inc.
Resumo:
The fields in 3-dimensional tapered waveguides are unstable compared with the fields in the straight waveguides. In the case of waveguide-to-fiber coupling and fiber-to-waveguide coupling, a sequence of short straight waveguides has been modeled to approximate the 3-dimensional tapered waveguide; and the unstable incident and reflected fields, as well as their derivatives, were determined by the beam propagation method(BPM). Then free space radiation mode(FSRM) was employed to calculate the reflected and transmitted powers. Analysis results of the coupling of fiber with silicon-on-insulator(SOI) tapered rib waveguides showed the feasibility of the method.
Resumo:
Micro Fabry-Perot (F-P) interferometers (MFPIs) are machined in a single-mode fiber (SMF) and a photonic crystal fiber (PCF) by using a near-infrared femtosecond laser, respectively. The strain and temperature characteristics of the two MFPIs with an identical cavity length are investigated and the experimental results show that the strain sensitivity of the PCF-based MFPI is smaller than that of the SMF-based MFPI due to their different waveguide structures, while the two MFPIs have close temperature sensitivities which are much smaller than that of an in-line SMF etalon sensor reported previously. These MFPIs in silica fibers are compact, stable, inexpensive, capable for mass-production and easy fabrication, offering great potentials for wide sensing applications. (c) 2007 Optical Society of America.
Resumo:
SPIE
Resumo:
Liquid-filled microstructured polymer optical fibers (MPOFs) as monolithic liquid-core array fiber are proposed and prepared by injecting high-refractive-index liquid into the holes array of the MPOFs. One example for potential applications is demonstrated as a new kind of coherent imaging fiber. It provides great potential for applications in chemical sensing, biosensors, and endoscopy, particularly in bifunctional detection. (C) 2009 Optical Society of America
Resumo:
Tb/Yb共掺的石英光纤的上转换绿光发光研究,研究了最佳浓度配比和发光机理。
Resumo:
Bulk samples of tellurite glass with composition 75TeO(2)-20ZnO-5Na(2)O (TZN) were fabricated by melting and quenching techniques. In order to improve the surface quality of optical fiber preform made with this tellurite glass, the authors developed a multistage etching process. The relationship between successive etching treatments and roughness of the TZN glass surface was probed by using an atomic force microscope. The results demonstrate that this multistage etching method effectively improves this tellurite glass surface smoothness to a level comparable with that of a reference silica glass slide, and the corresponding chemical micromechanisms and fundamentals are discussed and confirmed by atomic force microscopy, potentially contributing to the development of multicomponent soft glass fibers and devices. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3437017]