98 resultados para acetone reforming
Resumo:
The reaction of producing hydrogen for fuel cell which used normal octane as gasoline or diesel oil reactant through catalytic partial oxidizing and steam reforming method has been researched in the fixed-bed reactor. A series of catalysts that mainly used nickel supported on Al2O3 have been studied. It showed that the activity of the catalyst was increased with the content of nickel by using only nickel supported on Al2O3. However, its activity was not obviously increased when the content of nickel was over 5 wt%. The conversion ratio of normal octane and hydrogen selectivity were higher at higher reaction temperature. The single noble catalyst of palladium had better stability compared with that of platinum catalyst although their activity and selectivity were similar during the experimental reaction temperature. The prepared bimetallic catalyst consisted mainly of nickel and little noble metal of palladium supported on Al2O3. It showed that this catalyst had higher activity and selectivity, especially at lower or higher reaction temperatures compared with single nickel or palladium catalyst, and better stability. ((C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Ion - molecule reactions of disubstituted benzene with ion system of acetone and deuterium - labelled acetone under chemical ionization conditions were examined and the fragmentation reactions of the adduct ions formed by the ion - molecule reactions were studied using collision - induced dissociation (CID) technique. It was found that the electron - releasing groups favored the adduct reactions, whereas the electron - withdrawing groups did not. The position and properties of substituted groups affected the relative abundance of the adduct ions. The fragmentation reaction of the adduct ion formed by ortho - phenylenediamine with acetyl ion was similar to the reductive alkylation reaction of amine in condensed phase.
Resumo:
Acetone and dimethyl ether( DME) have been shown to be reagent gases of exceptional utitlity and versatility for the characterization of a variety of class of organic compounds. The fragmentation mechanisms of the adduct product ions, formed by ion/molceule reaction of the substrate with the ionized gases, have been studied and substantiated by experiments with acetone-d(6) and DME-d(6).
Resumo:
The ion-molecule reactions in acetone were investigated which were induced under the chemical ionization. The structural information of the reaction products were obtained by using collision-induced dissociation (CID) technique performed at ion kinetic energies of 30eV.
Resumo:
In this paper, a series of Sr1-xLaxNiAl11O19 catalysts were synthesized and their chemical and physical properties were investigated by XRD, UV-DRS, H-2-O-2 titration, TPR and Py-IR techniques. The experimental results show that the Sr1-xLaxNiAl11O19 catalysts have a magnetoplumbite structure and Ni ion is shared between tetrahedral and octahedral sites of the spinel blocks, and the amount of nickel ions in the tetrahedral environment increases with the increase of x value in Sr1-xLaxNiAl11O19. The TPR study revealed that the reducibility of the series of the catalysts depends strongly on the substitution value x, that is, a low temperature peak appears for samples without substitution, in case of samples with x = 1 high temperature peak appears, and for samples with 0
Resumo:
Ion-molecule reactions of four isomeric cyclopropane derivatives were investigated under chemical ionization(CI) conditions, using methane, acetone and vinyl acetate as reagent gases, The methane positive-ion CI mass spectra of each of two isomer pairs 1,2 and 3,4 are identical, and so are the collision-induced dissociation (CTD) spectra of the protonated molecules of each of the two isomer pairs, The protonation reactions for the isomer pairs 1,2 and 3,4 occurred on the sites of the carboxyl groups and the R groups, respectively, Differences between isomers 1 and 2 are observed in their acetone (A) positive-ion CI mass spectra and in the CID spectra of their adduct ions ([M+H+A](+)), The adduct ions of compounds 2, 3 and 4 with protonated acetone and with protonated acetone dimer are observed in their CI mass spectra, However, only the adduct ions of compound 1 with protonated acetone appear in its CI mass spectrum, The protonated dimers of each of the four compounds are found in their vinyl acetate positive-ion CI mass spectra, and the CID spectra of these dimers for isomers 1 and 2 can also reflect their stereostructural difference. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
A new type of the catalyst, LaNiAl11O19, for the methane reforming with carbon dioxide was synthesized and evaluated. LaNiAl11O19 has a hexaaluminate structure and can keep large surface and heat resistance against sintering at high reaction temperature. As compared with La2O3-Ni/SrAl12O19, in the CH4 + CO2 reaction, LaNiAl11O19 catalyst displays a higher catalytic activity, lower coking amount and excellent sintering resistance of Ni particle, due to its stable structure.
Resumo:
Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.
Resumo:
The characteristics of a compact plate-fin reformer (PFR) which integrates endothermic and exothermic reactions into one unit have been investigated by experiment as well as by numerical simulation. One reforming chamber was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. In the PFR, which is based on a plate-fin beat exchanger, catalytic combustion of the reforming gas is used to simulate the fuel cell anode off gas (AOG) which supplies the necessary heat for the methanol steam reforming. Temperature distributions in all chambers and composition distribution in reforming chamber have been studied, and the effect of the ratio of H2O/CH3OH on the performance of the PFR has also been investigated. A model of the PFR was derived using a three-dimensional numerical model for a cross-current flow arrangement. Theoretical predictions of the temperature distributions in the PFR were in good agreement with experimental values. In addition, the numerical model was able to accurately predict the methanol conversion and the reformate composition in reforming chamber. © 2005 Elsevier B.V. All rights reserved.