62 resultados para abutment screw
Resumo:
AlN/GaN superlattice buffer is inserted between GaN epitaxial layer and Si substrate before epitaxial growth of GaN layer. High-quality and crack-free GaN epitaxial layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.
Effects of buffer layers on the stress and morphology of GaN epilayer grown on Si substrate by MOCVD
Resumo:
Low temperature (LT) AlN interlayer and insertion of superlattice are two effective methods to reduce crack and defects for GaN grown on Si substrate. In this paper, the influence of two kinds of buffer on stress, morphology and defects of GaN/Si are studied and discussed. The results measured by optical microscope and Raman shift show that insertion of superlattice is more effective than insertion of LT-AlN in preventing the formation of cracks in GaN grown on Si substrate. Cross-sectional TEM images show that the not only screw but edge-type dislocation densities are greatly reduced by using the superlattice buffer. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a technique based on wet chemical etching that enables quick and accurate evaluation of edge- and screw/mixed-type threading dislocations (TDs) in GaN. Large and small etch pits are formed by phosphoric acid on the etched surfaces. The large etch pits are attributed to screw/mixed TDs and the small ones to edge TDs, according to their locations on the surface and Burgers vectors of TDs. Additionally, the origin of small etch pits is confirmed by a transmission electron microscopy. The difference in the size of etch pits is discussed in view of their origin and merging. Overetching at elevated temperatures or for a long time may result in merging of individual etch pits and underestimating of the density of TDs. Wet chemical etching has also been proved efficient in revealing the distribution of TDs in epitaxial lateral overgrowth GaN.
Resumo:
We report the transmission-electron microscopy study of the defects in wurtzitic GaN films grown on Si(111) substrates with AIN buffer layers by the metal-organic chemical vapour deposition method. The In0.1Ga0.9N/GaN multiple quantum well (MQW) reduced the dislocation density by obstructing the mixed and screw dislocations passing through the MQW. No evident reduction of the edge dislocations density by the MQW was observed. It was found that dislocations with screw component can be located at the boundaries of sub-grains slightly in-plane misoriented.
Resumo:
We report the transmission electron microscopy (TEM) study of the microstructure of wurtzitic GaN films grown on Si(I I I) substrates with AlN buffer layers by metalorganic chemical vapor deposition (MOCVD) method. An amorphous layer was formed at the interface between Si and AlN when thick GaN film was grown. We propose the amorphous layer was induced by the large stress at the interface when thick GaN was grown. The In0.1Ga0.9N/GaN multiple quantum well (MQW) reduced the dislocation density by obstructing the mixed and screw dislocations from passing through the MQW. But no evident reduction of the edge dislocations by the MQW was observed. It was found that dislocations located at the boundaries of grains slightly in-plane misoriented have screw component. Inversion domain is also observed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
大型制冷机组部件众多,管路比较复杂,又是必须承受高压的容器,安装、调试都有严格的要求。以30HXC165A制冷机组的现场冲洗、调试为例,详细介绍了大型制冷机组在试运行之前标准的准备工作。这些工作包括吹扫、试压、排污、充注制冷剂和冲洗调试等全部过程及注意事项。本文为大型螺杆式制冷机组这种压力容器设备的运行和维护管理提供了工程实践经验。结果表明:在施工调试过程中,只有各方互相协调,并且严格按照相关文件和规范要求才能顺利完成制冷机组的安装调试,为以后的正常运行打下基础。
Strict requirements must be met during the installation and commissioning program for the large-scale chiller units since it has multitudinous components and complicated pipelines with high-pressure vessels. Preparation program was present in detail for large-scale chiller units before commissioning as the example of 30HXC165A chiller units. The total arrangement was considered about chiller units in terms of blowing, pressure trial, drainage, refrigerant filling, flushing and commissioning. The paper also provides the operation and maintenance engineering experience for large-scale screw chiller units. The results indicate that installation and commissioning can be achieved only strict abidance the related regulations demand based on harmony of all engineering participants (owners, engineering, providers etc.). Furthermore, favorable installation and commissioning work can provide the reliable foundation of normal operation.
Resumo:
Propulsion characteristics of wing-in-ground effect propulsors were investigated using a comparative analysis of thrust and powering characteristics between wing-in-ground (WIG) effect thrusters and traditional screw propellers. WIG thrusters were found to have constant thrust production and efficiency, nearly independent of speed of advance, as contrary to screw propellers, whose optimum efficiency occurs at only one speed point. To produce the same amount of thrust as equivalent screw propellers, WIG thrusters have to work under heavily loaded operating conditions. WIG thrusters were also found to produce a relatively lower but nearly constant efficiency and thrust, independent of speed. Another distinguishing propulsion characteristic revealed for WIG thrusters is that they are capable of operating at much higher speeds, in a range of three to six times that of screw propellers of the same size. While the speed range of screw propellers is mainly limited by their geometric pitch, the speed range of WIG thrusters has no speed limit in ideal fluid. In reality, the speed range is only limited by viscous drag and cavitation, or compressibility, in water or air, respectively. This suggests a potential for WIG thrusters of higher speed application than screw propellers. An experimental investigation and validation of the propulsion system is warranted. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
In order to deal with the complicated relationships among the variables of the reactive extrusion process for activated anionic polymerization, a three-dimensional equivalent model of closely intermeshing co-rotating twin screw extruders was established. Then the numerical computation expressions of the monomer concentration, the monomer conversion, the average molecular weight and the fluid viscosity were deduced, and the numerical simulation of the reactive extrusion process of Styrene was carried out. At last, our simulated results were compared with Michaeli's simulated results and experimental results. (C) 2007 Elsevier B.V. All rights reserved
Resumo:
A reactive type nonionic surfactant, polyether pentaerythritol mono-maleate (PPMM) was synthesized in our laboratory. PPMM was adopted as functionalizing monomer and grafted onto linear low density polyethylene (LLDPE) with a melt reactive extrusion procedure. FT-IR was used to characterize the formation of grafting copolymer and evaluate their degree of grafting. The effects of monomer concentration, reaction temperature and screw run speed on the degree of grafting were studied systematically. Isothermal crystallization kinetics of LLDPE and LLDPE-g-PPMM samples was carried out using DSC.
Resumo:
Linear low density polyethylene (LLDPE) was functionalized with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) by using -ray pre-irradiation in air in a twin-screw extruder. Fourier-transformed infrared spectroscopy (FT-IR) and electron spectroscopy for chemical analysis (ESCA) were used to characterize the formation of LLDPE-g-AMPS copolymers. The content of AMPS in LLDPE-g-AMPS was determined by using element analysis instrument. The effects of concentrations of monomer, reaction temperature and pre-irradiation dose on degree of grafting were investigated. The critical surface tension of LLDPE-g-AMPS was measured by using contact angle method. The influences of the degree of grafting on crystallization properties were studied by using DSC. Compared with neat LLDPE, the crystallization temperature increased about 4C, and crystallinity decreased with increasing degree of grafting. Crystallization rates of grafted LLDPE were faster than that of plain LLDPE at the same crystallization temperature.
Resumo:
In the reactive extrusion process for polymerization, the chemical calorific effect has a great influence on the temperature. In order to quantitatively analyze the polymerization trend and optimize the processing conditions, the phenomena of the chemical calorific effect during reactive extrusion processes for free radical polymerization were analyzed. Numerical computation expressions of the heat of chemical reaction and the reactive calorific intensity were deduced, and then a numerical simulation of the reactive extrusion process for the polymerization of n-butyl methacrylate was carried out. The evolutions of the heat of chemical reaction and the reactive calorific intensity along the! axial direction of the extruder are presented, on the basis of which reactive processing conditions can be optimized.
Resumo:
The gel effect in the reactive extrusion process for free radical polymerization in a closely intermeshing co-rotating twin screw extruder was investigated. First the reaction kinetic model was constructed mainly on the basis of entanglement theory. Next, numerical calculation expressions for the initiator and monomer concentrations, monomer conversion, average molecular weight and apparent viscosity were deduced. Finally, the evolution of the above variables were shown and discussed for the example of butyl methacrylate. The simulated results of the monomer conversion are in good agreement with experimental results.
Resumo:
The reactive extrusion for polymerization is an integrated polymer processing technology. A new semi-implicit iterative algorithm was proposed to deal with the complicated relationships among the chemical reaction, the macromolecular structure and the chemorheological property. Then the numerical computation expressions of the average molecular weight, the monomer conversion, and the initiator concentration were deduced, and the computer simulation of the reactive extrusion process for free radical polymerization was carried out, on basis of which reactive processing conditions can be optimized.
Resumo:
The anionic copolymerization process of styrene-buradiene (S/B) block copolymer in a closely intermeshing co-rotating twin screw extruder with butyl-lithium initiator was studied. According to the anionic copolymerization mechanism and the reactive extrusion characteristics, the mathematical models of monomer conversion, average molecular weight and fluid viscosity during the anionic copolymerization of S/B were constructed, and then the reactive extrusion process was simulated by means of the finite volume method and the uncoupled semi-implicit iterative algorithm. Finally, the influence of the feeding mixture composition on conversion was discussed. The simulated results were nearly in agreement with the experimental results.
Resumo:
To analyze the complicated relationships among the variables during the reactive extrusion process of polyamide 6 (PA6), and then control the chemical reaction and the material structures, the process of continuous polymerization of caprolactam into PA6 in a closely intermeshing co-rotating twin screw extruder was simulated by means of the finite volume method, and the influences of three key processing parameters on the reactive extrusion process were discussed. The simulated results of an example were in good agreement with the experimental results.