126 resultados para ab initio electron theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geometry optimization and harmonic vibrational frequency calculations have been performed on the (X) over bar (2)A(1) state of NO2 and (X) over bar (1)A(1) state of NO2-. Franck-Condon analyses and spectral simulations were carried out on the NO2((X) over bar (2)A(1))-NO2-((X) over bar (1)A(1)) photo detachment process. In addition, the equilibrium geometry parameters, r(NO)= 1.248 +/- 0.005 Angstrom and angle(ONO) 116.8 +/- 0.5degrees, of the (X) over bar (1)A(1) state of NO2-, are derived by employing an iterative Franck-Condon analysis procedure in the spectral simulation. Our conclusions regarding the anion geometry suggest a reinterpretation of the results of Woo et al. (C) 2004 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical method to calculate multidimensional Franck-Condon factors including Duschinsky effects is described and used to simulate the photoelectron spectra of HCF- and CF2- radicals. Geometry optimization and harmonic vibrational frequency calculations have been performed on the (X) over tilde (1)A' state of HCF and (X) over tilde (2)A" state of HCF-, and (X) over tilde (1)A(1) state of CF2 and (X) over tilde B-2(1) state of CF2-. Franck-Condon analyses and spectral simulation were carried out on the first photoelectron band of HCF- and CF2- respectively. The theoretical spectra obtained by employing B3LYP/6-311 + G(2d,p) values are in excellent agreement with the observed ones. In addition, the equilibrium geometry parameters, R(CF) = 0.1475 +/- 0.0005 nm, of the (X) over tilde (2)A" state of HCF-, and r(FC) = 0.1425 +/- 0.0005 nm and angle(FCF) = 100.5 +/- 0.5degrees, of the (X) over tilde B-2(i) state of CF2-, are derived by employing an iterative Franck-Condon analysis procedure in the spectral simulation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiphoton ionization of binary mixed clusters (C5H5N)(x)-(H2O)(y) at 532, 355 and 266 nm laser wavelengths has been investigated using TOF mass spectrometer. The experiments showed that almost all the products were protonated ions, At 532 and 355 nm, the products were mainly protonated pyridine clusters (C5H5N)(n)-H+, while at 266 nm, mixed binary cluster ions (C5H5N)(m)- (H2O)(n)-H+ appeared. It was found that the abundance of the [(C5H5N)(3)-H2O-H](+) ions was abnormally high. The calculation indicated that the ion [(C5H5N)(3)-H2O-H](+) is Of a kind of magic number structures with C-3v symmetry. A stepwise reaction mechanism is suggested that photoionization is followed by dissociation. (C) 2001 Elsevier Science B.V. All rights reserved.