27 resultados para Winds.
Resumo:
Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.
Resumo:
[ 1] Intraseasonal variability of Indian Ocean sea surface temperature (SST) during boreal winter is investigated by analyzing available data and a suite of solutions to an ocean general circulation model for 1998 - 2004. This period covers the QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) observations. Impacts of the 30 - 90 day and 10 - 30 day atmospheric intraseasonal oscillations (ISOs) are examined separately, with the former dominated by the Madden-Julian Oscillation (MJO) and the latter dominated by convectively coupled Rossby and Kelvin waves. The maximum variation of intraseasonal SST occurs at 10 degrees S - 2 degrees S in the wintertime Intertropical Convergence Zone (ITCZ), where the mixed layer is thin and intraseasonal wind speed reaches its maximum. The observed maximum warming ( cooling) averaged over ( 60 degrees E - 85 degrees E, 10 degrees S - 3 degrees S) is 1.13 degrees C ( - 0.97 degrees C) for the period of interest, with a standard deviation of 0.39 degrees C in winter. This SST change is forced predominantly by the MJO. While the MJO causes a basin-wide cooling ( warming) in the ITCZ region, submonthly ISOs cause a more complex SST structure that propagates southwestward in the western-central basin and southeastward in the eastern ocean. On both the MJO and submonthly timescales, winds are the deterministic factor for the SST variability. Short-wave radiation generally plays a secondary role, and effects of precipitation are negligible. The dominant role of winds results roughly equally from wind speed and stress forcing. Wind speed affects SST by altering turbulent heat fluxes and entrainment cooling. Wind stress affects SST via several local and remote oceanic processes.
Resumo:
The cold-water event along the southeast coast of the United States in the summer of 2003 is studied using satellite data combined with in situ observations. The analysis suggests that the cooling is produced by wind-driven coastal upwelling, which breaks the thermocline barrier in the summer of 2003. The strong and persistent southwesterly winds in the summer of 2003 play an important role of lifting the bottom isotherms up to the surface and away from the coast, generating persistent surface cooling in July-August 2003. Once the thermocline barrier is broken, the stratification in the nearshore region is weakened substantially, allowing further coastal cooling of large magnitudes by episodic southerly wind bursts or passage of coastally trapped waves at periods of a few days. These short-period winds or waves would otherwise have no effects on the surface temperature because of the strong thermocline barrier in summer if not for the low-frequency cooling produced by the persistent southwesterly winds.
Resumo:
An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.
Resumo:
The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated, which show the following results. (1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160 W as its axis and a meridional seesaw pattern with 6-8 degrees N as its transverse axis. The meridional oscillation has a phase lag of about 90 to the zonal oscillation, both oscillations get together to form the El Nino/La Nina cycle, which behaves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12 degrees N. (2) There are two main patterns of wind stress anomalies in the tropical Pacific, of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific, and the abnormal cross- equatorial flow wind stress and its corresponding divergence field, which has a sign opposite to that of the equatorial region, in the off-equator of the tropical North Pacific, and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly. (3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle, which results in the sea level tilting, provides an initial potential energy to the mixed layer water oscillation, and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12 degrees N of the North Pacific basin, therefore determines the amplitude and route for ENSO cycle. The ITCZ anomaly has some effects on the phase transition. (4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific, which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation, which in turn intensifies the oscillation. The coupled system of ocean-atmosphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle. In conclusion, the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12 degrees N. When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation, the oscillation will be stronger or maintain as it is, while when the force is less than the resistance, the oscillation will be weaker, even break.
Resumo:
应用矢量经验正交函数(Vector EOF)方法和长序列网格点风距平资料对东亚季风区低空异常风场进行分析,以揭示东亚季风区矢量风场异常的主要模态及其年际、年代际振荡特征和成因。 研究方法包括: 1)EOF方法是将一个空间观测场的时间序列资料分解成若干重要的正交的空间和时间模态,从而提取大气和海洋观测资料的主要时空变率特征(即模态)。目前,EOF模态也可直接由奇异值分解(SVD)方法计算获得,勿需再对观测资料矩阵进行协方差矩阵的计算。首先将风场资料集的 分量矩阵和 分量矩阵融合成为一个新矩阵 ,然后对该新矩阵 应用SVD方法进行计算,获得 分量和 分量的主要的EOF空间模态及其统一的时间模态。最后,将 分量和 分量的各主要空间模态进行合并处理,形成矢量形式的彼此正交的EOF空间模态。由于是对矩阵 进行EOF分解(而不是对 和 分别进行EOF分解),所获得的 和 的空间特征模态对应于相同的时间系数,从而可以合并成为一个具有现实意义的特征风场(即全风矢量场)。 2)将滤波技术(例如,Butterworth滤波器)和各种谱分析技术(包括功率谱、交叉谱和奇异谱SSA)应用于时间模态,探讨其年际、年代际振荡特征及与ENSO的联系。 所使用资料为NCEP/NCAR提出的1950年1月至2004年12月850 hPa全球月平均风场网格点资料,资料分辨率为2.5°×2.5°。研究区为0~50N,100~150E。 结果表明,东亚异常季风典型流场第一模态(VEOF-1)属于ENSO相关模态,其时间模态与Nino3指数之间具有较高的负相关关系,但以季风异常滞后ENSO进程6~8个月为最显著。这表明,东亚热带和副热带季风风场变异与ENSO之间联系紧密。提出了一个VEOF-1对ENSO响应的概念模型。 前6个模态,其积累方差贡献率接近60%,基本可表达东亚季风区风场异常的典型类型。 (1)东亚异常季风模态VEOF-1以年际尺度振荡最为显著(是年际尺度振荡的代表模态),并以2~4年周期为最显著;东亚异常季风模态VEOF-2至VEOF-4则主要表现为11年~20年尺度的年代际变化。 (2)东亚异常季风VEOF-1时间模态与Nino3指数之间具有较高的负相关,并以VEOF-1落后Nino3距平变化6~8个月为最显著。 对矢量风距平流场作VEOF展开,能揭示季风变异的空间结构特征和时间振荡规律,并具有直观的天气学意义。 VEOF-1属于ENSO相关模态,其时间模态与Nino3指数之间具有较高的负相关关系,但以季风异常的响应滞后ENSO事件6~8个月为最显著。也即在它们之间的遥相关关系中,赤道东太平洋SST持续地异常升高(降低),6~8个月后东亚异常季风VEOF-1模态明显减弱(加强)。
Resumo:
We investigated how the high small-scale species richness of an alpine meadow on the Qinghai-Tibet Plateau, China, is maintained. This area is characterized by strong wind and severe cold during long winters. In winter, most livestock is grazed on dead leaves in small pastures near farmers' residences, whereas in the short summer, livestock is grazed in mountainous areas far from farmers' residences. The number of plant species and the aboveground biomass were surveyed for three adjacent pastures differing in grazing management: a late-winter grazing pasture grazed moderately from 1 February to 30 April, an early-winter grazing pasture grazed lightly from 20 September to late October, and a whole-year grazing pasture grazed intensively throughout the entire year. In each pasture, we harvested the aboveground biomass from 80 or 100 quadrats of 0.01 m(2) along a transect and classified the contents by species. We observed 15.5-19.7 species per 0.01 m(2), which is high richness per 0.01 m(2) on a worldwide scale. The species richness in the two winter grazing pastures was higher than that in the whole-year grazing pasture. The spatial variation in species richness and species composition in the two winter grazing pastures in which species richness was high was greater than that in the whole-year grazing pasture in which species richness was lower. Most of the leaves that are preserved on the winter grazing pastures during summer are blown away by strong winds during winter, and the remaining leaves are completely exhausted in winter by livestock grazing. A pasture with a high richess is accompanied by a high spatial variation in species richness and species composition. There is a high possibility that the characteristic of spatial variation is also caused by traditional grazing practices in this area.
Resumo:
There have been no detailed studies on reproductive biology of the Great Cormorant (Phalacrocorax carbo sinensis) in Qinghai-Tibet Plateau. We conducted such investigations during the breeding seasons of 1999 and 2000 in Qinghai-Lake Bird Isle, China. Great Cormorants began to migrate to Qinghai-Lake for reproduction from the middle of March and left from early October at the end of reproduction. Nesting periods were from early April to mid June and took 50 days. Egg-laying occurred during the three weeks from the end of April to 20 May. Females typically laid an egg every 1-2 days until clutch completion. Mean clutch size in the study area over two years was 3.3 (SE +/- 0.13, N = 68, range 1-5) and most (66.18%) fell within the range 3-4 eggs. Length of eggs averaged 61.01 mm and breadth averaged 34.13 mm. Fresh egg weight averaged 57.34 g (SE +/- 0.36, range 46.0-73.7 g, N = 179). Hatching success was 48.7% and fledging success was 64.9% over two years. Decline of available fish resources in Qinghai-Lake might be one of main causes of lower reproductive success. The causes of chick loss were possibly high altitude, high winds and prolonged rain.
Resumo:
The Sanmen Gorge area is located in the southernmost margin of the Chinese Loess Plateau with well developed eolian deposit sequence for the past 2.6 Ma, providing a key site for further understanding of the evolution history of the East Asian monsoon since late Pliocene. This study attempted to characterize the stratigraphy and paleoclimate record of the loess-paleosol sequence in the Songjiadian section. The work involved includes systematic field investigation, paleomagnetic and rock magnetic analyses, grain size and major chemical composition analyses, and multiple proxy measurements of magnetic susceptibility, color reflectance and the ratio of CBD-dissolvable iron to the total iron (FeD/FeT). By comparisons of the Songjiadian section with well studied loess sections in the west of the Sanmen Gorge, the spatial variations of the East Asian monsoon was evaluated for some periods during which typical loess or paleosols developed. The following conclusions have been obtained. 1. Stratigraphic correlation and paleomagnetic result demonstrate that the loess-paleosol sequence in the Songjiadian section was accumulated from 2.6Ma, and is generally a complete and continuous loess sequence. However, notable differences from type loess sections have been identified for a few loess and paleosol units, featured by absence or anomalous thickness in the Songjiadian section. 2. Magnetic susceptibility and chromaticity records clearly reveal the loess-paleosol cycles, and indicate that the Sanmen Gorge area has been warmer and more humid than the Lingtai and Jingchuan sections in the western central Loess Plateau since the Early Pleistocene. 3. Grain size distribution patterns are typical of eolian dust, and show a great similarity between various units of loess and paleosols, and between the S32 and the underlying Red Clay through the Songjiadian profile, suggesting the eolian origin for the loess, paleosols and the Red Clay. 4. Comparison of the FeD/FeT curves from different loess sections indicates a stronger chemical weathering in the Songjiadian section and notable enhancement around 1800, 800 and 600 ka BP, implying the strengthening of the East Asian monsoon during these periods. In contrast, it was weakened at 1100 ka BP. Generally, the summer monsoon shows a gradually decreasing trend during the entire Pleostocene, but the spatial pattern typified by an increasing trend in weathering intensity from north to south remained the same. 5. The loess unit L9 in the Songjiadian section displays two geomagnetic field anomalies with the midpoint ages of 0.917 and 0.875 Ma respectively, with a segment of 12 ka. They are demonstrated to be equivalent to the Santa Rosa and Kamikatsura geomagnetic excursions. 6. Magnetite is the main magnetic carrier for both loess and paleosols. Maghemite concentration is higher in paleosols than in loess, and is an important carrier for the enhanced magnetic susceptibility in paleosols. Magnetic fabric analysis suggests a dominant N-S wind direction prevailing in the L9 and L15, while the summer winds were dominantly in NNE-SSW direction during the S8 period, notably differing from previous studies.
Resumo:
Acoustic Gravity waves (AGW) play an important role in balancing the atmospheric energy and momentum budget. Propagation of gravity wave in the atmosphere is one of the important factors of changing middle and upper atmosphere and ionosphere. The purpose of this dissertation is to study the propagation of gravity wave in a compression atmosphere whit means of numerical simulation and to analyze the response of middle and upper atmosphere to pulse disturbance from lower atmosphere. This work begins with the establishment of 2-D fully nonlinear compressible atmospheric dynamic model in polar coordinate, which is used ton numerically study gravity wave propagation. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. We also simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model and analyze the data we obtained by using Fourier Transform (FT), Short-time Fourier Transform (STFT) and Empirical Mode Decomposition (EMD) method which is an important part of Hilbert-Huang Transform (HHT). The research content is summarized in the following: 1. By using a two-dimensional full-implicit-continuous-Eulerian (FICE) scheme and taking the atmospheric basic motion equations as the governing equations, a numerical model for nonlinear propagation of acoustic gravity wave disturbance in two-dimensional polar coordinates is solved. 2. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. Results of numerical simulation show that the acoustic gravity wave packets propagate steadily upward and keep its shape well after several periods. 3. We simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model, and obtain the distribution of a certain physical quantity in time and space from earth’s surface to 300km above. The results reveal that the response of ionosphere occurs at a large horizontal distance from the source and the disturbance becomes greater with increasing of height. The situation when the direction of the background wind is opposite to or the same as the direction of disturbed velocity of gravity-wave is studied. The results show that gravity wave propagating against winds is easier than those propagating along winds and the background wind can accelerate gravity wave propagation. Just upon the source, an acoustic wave component with period of 6 min can be found. These images of simulation are similar to observations of the total electron content (TEC) disturbances caused by the great Sumatra-Andaman earthquake on December 26 in 2004. 4. Using the EMD method the disturbed velocity data of a certain physical quantity in time and space can be decomposed into a series of intrinsic mode function (IMF) and a trend mode respectively. The results of EMD reveal impact of the gravity wave frequency under the background winds.
Resumo:
Neutral winds and electric fields in the ionospheric F layer play important roles in the variations of the ionosphere, and also affect the thermospheric circulation via the close coupling between the ionosphere and the thermosphere. By now, the neutral winds and electric drifts are generally observed with ground-based Fabry-Perot interferometers (FPI) and incoherent scatter radars (ISR), rockets, and satellite-borne instrument. Based on the servo theory, the ionospheric equivalent winds, which include the information of both the neutral winds and electric fields, can be derived from these characteristic parameters observed by ionosondes. This indirect derivation has potential values in climatological researches and space weather forecast. With the data set of the incoherent scatter radar observations at Millstone Hill, USA, from 1976 to 2006, we statistically analyzed the climatological variations of the vertical component of the equivalent winds (VEWs) over Millstone Hill, which are derived from the ionospheric key parameters (the peak electron number density and peak height of the F2 layer, NmF2 and hmF2) on the basis of the servo theory, Liu's method, and measurements from the ion line-of-sight velocity as well. The main results of this analysis are summarized as follows: (1) The values of VEWs over Millstone Hill during nighttime are stronger than in the daytime, and the upward drift dominates most of the day. In 1993, Hagan found that the component of the neutral winds in the magnetic meridion in daytime is weaker than during nighttime under both solar maximum and minimum conditions; he also found that the equatorward winds dominate most of the day. Both results suggest that the thermosphere in Millstone Hill is modulated by the aurorally driven high-latitude circulation cell; that is, during geomagnetic quiet periods, the average auroral activity is strong enough to drive thermospheric circulation equatorward for most of the day at Millstone Hill. Moreover, since ion drag is the strongest during daytime when F region densities are enhanced by photoionization, the wind speeds are smaller during the daytime than in the nighttime. (2) There is equinoctial symmetry in VEWs at Millstone Hill. The amplitudes and phases of VEWs in spring are quite similar to those in autumn. In contrast, the nighttime upward drift in winter is weaker than in summer and the difference becomes more significant with increasing solar activity. This solstice asymmetry indicates that, the aurorally driven circulation in the northern hemisphere at Millstone Hill latitude is weaker in winter due to arctic darkness, because the subsolar point is in the southern hemisphere. (3) The comparison of the VEWs derived from three methods, i.e., the servo theory, Liu's method, and the ISR ion line-of-sight velocity measurements, indicates that the amplitudes and main phase tendencies of these VEWs accord well with each other during nighttime hours. However, the case in the daytime is relatively worse. This daytime discrepancy can be explained in terms of the effects of photochemical processes and the choices of the servo constants. A larger servo constant gives a stronger plasma drift in daytime. Therefore, this study tells how important to choose a suitable constant for deriving VEWs at Millstone Hill.
Resumo:
The transportation and deposition of eolian materials of Chinese loess is correlated and effected by the monsoon from the mid-high latitude. Therefore study of the winter monsoon evolution can help us to understand the dynamic mechanism to climate changes in the east-Asian areas. The anisotropy of magnetic susceptibility (AMS) measurements have been carried out on the samples from the last 250ka wind -blown loess-paleosol sequences at Baicaoyuan and Luochuan. And the main conclusions are following:The magnetic foliation is almost horizontal of the two sections. AMS canthus be represented by an oblate ellipsoid with average K3 perpendicular to thebedding plane and Ki within the bedding plane. It has also shown that the ^-factor isless than 0.5 of the majority of samples. So the two sections are normal magneticfabric for sediments.The degree of anisotropy always shows a strong correlation with the foliationrather than with lineation, therefore the anisotropy is controlled by the foliation.Furthermore the foliation is nearly less than 1.02 and shows the typical wind-blownsediments anisotropy.The intensity of winter monsoon, grain size of the eolian inputs, the foliationand the degree of anisotropy are somewhat inter-related. Generally, the higherintensity of the winter monsoon will carry coarser-grained eolian material, therebyresulting in a larger foliation during deposition. Also the post-depositional compactioncontributes to the anisotropy.The AMS features between loess and paleosol are somewhat different. Wefound that the F, P values of paleosol are lower than that of its parent loess respectively. Moreover, the difference does also exists between the two sections. The anisotropy of Baicaoyuan is more significant than Luochuan section, which maybe related with the location and the intensity of the post-deposition reworks.5. We note that the declination of the long axis is NWW in Baicaoyuan section and the observed NWW direction of the winter monsoon winds based on AMS is consistent with the view that the winter monsoons prevail along the NW-SE direction. But at the Luochuan section, because of the strong affection of the post-deposition reworks, the direction of the long axis is nearly random in the foliation and hardly recognizes the paleowind direction since the last two interglacials.Correlation between the two loess-paleosol sequences implies that it is available in arid or semi-arid areas to take AMS to recognize the paleowind directions on the Loess Plateau.