18 resultados para Water resources planning


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A vertical 2-D numerical model is presented for simulating the interaction between water waves and a soft mud bed. Taking into account nonlinear rheology, a semi-empirical rheological model is applied to this water-mud model, reflecting the combined visco-elasto-plastic properties of soft mud under such oscillatory external forces as water waves. In order to increase the resolution of the flow in the neighborhood of both sides of the inter-surface, a logarithmic grid in the vertical direction is employed for numerical treatment. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study is to increase the precision of groundwater modeling. The way is use the distributed model calculate the mountain basin groundwater lateral discharge and the river runoff. With appropriate technique help, the groundwater model can couple the distributed model results. This paper’s study object is makeing the distributed hydrological model HEC-HMS coupled to the popular groundwater model Visual MODFLOW. The application example is Jiyuan basin which is a typical basin of North China. HEC-HMS can calculate the surface runoff and subsurface runoff at mountain-pass. The subsurface runoff can turn to recharge well straightly. The water level - runoff course and Trial method is used to back analyze the parameters of surface runoff to Visual MODFLOW. So the distributed hydrological model can coupled to the groundwater model. The research proved that base on couple the distributed surface water model the groundwater model’s results are notability improved. The example is Jiyuan basin where use the distributed model coupled to the groundwater model. On the base of the coupled model applied to Jiyuan basin groundwater modeling. The paper estimates the groundwater change in the study area. Then, by use the water resources integrated planning results, the article calculate the basin groundwater can be development and utilization quantity and potential.