100 resultados para WATER INTERFACE
Resumo:
利用氢气泡时间线-脉线组合示踪技术定量地考察剪切水-气界面下的湍流猝发现象,分析猝发事件的信号特征,重点探讨猝发与湍能产生之间的联系.在猝发过程中,水面近区的瞬时流速和Reynolds切应力出现较大幅度的脉动,它们在时间和空间垂直方向上表现出高度的相干性,这是猝发事件的一个显著特征.在猝发期,猝发事件涉及的空间区域内Reynolds切应力和湍流脉动强度明显比平均值和非猝发期的情况大.其结果表明:在所考察的实验条件下,猝发是剪切水-气界面附近湍流产生的主要过程.
Resumo:
Temporal and spatial dynamics of nitrogen in lake and interstitial water were studied monthly in a large shallow, eutrophic lake in subtropical China from October 2002 to September 2003. The distribution of nitrogen was consistent with the idea that high nitrogen concentrations in the western part of the lake resulted from high levels of the nutrients from the surrounding cities through sewage-drainage systems. Nitrate was the predominant form of nitrogen in the overlying water, while ammonium was predominant in the interstitial water, indicating that strong oxidative nutrient regeneration occurred near the sediment-water interface. Nitrate could be an important dissolved inorganic matter source for phytoplankton, which in turn influenced the seasonal variations of nitrate concentrations in lake water. Significant positive correlation between ammonium fluxes and water temperature was observed and could probably be attributed to the intensified ammonification and nitrate reduction with increased temperature. Positive correlation between ammonium fluxes and algae biomass and Chl a concentrations may indicate that phytoplankton was an important factor driving ammonium fluxes in our study lake, and vice versa that higher fluxes of ammonium supported a higher biomass of the phytoplankton.
Resumo:
Carbon stable isotope analysis of surface bloom scum and subsurface seston samples was conducted in shallow eutrophic lakes in China during warm seasons from 2003 to 2004. delta C-13 values of bloom scum were always higher (averaged 5 parts per thousand) than those of seston in this study, and the possible reasons were attributed to (i) direct use of atmospheric CO2 at the air-water interface, (ii) decrease in C-13 fractionation due to higher carbon fixation, (iii) active CO2 transport, and/or (iv) HCO3 accumulation. Negative correlation between delta C-13(scum) - delta C-13(seston) and pH in the test lakes indicated that phytoplankton at the subsurface water column increased isotopic enrichment under the-carbon limitation along with the increase of pH, which might in turn decreased the differences in 313 C between the subsurface seston and the surface scums. Significant positive correlations of seston 8 13C with total concentrations of nitrogen and phosphorus in water column suggested that the increase in delta C-13 of seston with trophic state was depending on nutrient (N or P, or both) supply. Our study showed that delta C-13 of phytoplankton was indicative of carbon utilization, primary productivity, and nutrient supply among the eutrophic lakes. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air-water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62 +/- 0.36, 0.70 +/- 0.36, and 1.31 +/- 0.57 mg m(-2) h(-1), respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8 +/- 20.4, 52.2 +/- 14.1 and 3.6 +/- 26.8 mg m(-2) h(-1), respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air-water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.
Resumo:
Up to now, there have been few studies in the annual fluxes of greenhouse gases in lakes of subtropical regions. The fluxes of methane (CH4) and carbon dioxide (CO2) across air-water interface were measured in a shallow, hypereutrophic, subtropical Lake Donghu (China) over a year cycle, using a static chamber technique. During the year, Lake Donghu emitted CH4 and CO2; the average flux of CH4 and CO2 was 23.3 +/- 18.6 and 332.3 +/- 160.1 mg m(-2) d(-1), respectively. The fluxes of CH4 and CO2 showed strong seasonal dynamics: CH4 emission rate was highest in summer, remaining low in other seasons, whereas CO2 was adsorbed from the atmosphere in spring and summer, but exhibited a large emission in winter. Annual carbon (C) budget across air-water interface in Lake Donghu was estimated to be 7.52 +/- 4.07 x 10(8) g. CH4 emission was correlated positively with net primary production (NPP) and temperature, whereas CO2 flux correlated negatively with NPP and temperature; however, there were no significant relationships between the fluxes of CH4 and CO2 and dissolved organic carbon, a significant difference from boreal lakes, indicating that phytoplankton rather than allochthonous matter regulated C dynamics across air-water interface of subtropical lake enriched nutrient content. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
An effective and facile method for the fabrication of a surface-enhanced Raman scattering (SERS)-active film with closely packed gold nanoparticle (AuNP) arrays is proposed by self-assembly of different sizes ( 16, 25, 40 and 70 nm) of AuNPs at a toluene/water interface with ethanol as the inducer. The as-prepared AuNP arrays exhibit efficient Raman scattering enhancement, and the enhancement factors estimated using p-aminothiophenol as a probe molecule range from 10(5) to 10(7).
Resumo:
An effective and facile method for fabrication of large area of aggregated gold nanorods (AuNRs) film was proposed by self-assembly of AuNRs at a toluene/water interface for the first time. It was found that large area of aggregated AuNRs film could be formed at the interface of toluene and water due to the interfacial tension between the two phases. The obtained large area of aggregated AuNRs film exhibits strong surface-enhanced Raman scattering (SERS) activity with 4-aminothiophenol (4-ATP) and 2-aminothiophenol (2-ATP) as the probe molecules based on the strong electromagnetic coupling effect between the very adjacent AuNRs.
Resumo:
In this work, rapid fabrication of Au nanoparticle (Au NP) films has been simply achieved by alternate adsorption of citrate-stabilized Au NPs and poly(diallyldimethylammonium chloride) with the aid of centrifugal force. In contrast to conventional electrostatic assembly, we carried out the assembly process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force can be imposed on Au NPs. Scanning electron microscopy and cyclic voltammetry were employed to characterize the assembly procedure and the thus-prepared thin solid films. Our results demonstrate that centrifugal force can promote the assembly of Au NPs and therefore enable the rapid fabrication of functional Au NP films.
Resumo:
The monolayer of the mixture of octadecanoic acid and octadecylamine with molar ratio 1: 1 has been investigated at the air-water interface. It was found that the monolayer shows a rather stable state at the surface pressure of 30 mN/m and this monolayer can be transferred onto a CaF2 plate by Langmuir-Blodgett (LB) technique. The infrared spectra of LB films indicated that octadecyl ammonium octadecanoate is formed by an intermolecular proton exchange between adjacent carboxylic and aminic groups (COO- and NH3+). In three-layer LB film, the CH2 scissoring mode of the long hydrocarbon chains of octadecyl ammonium octadecanoate shows a broad band feature at about 1468 cm(-1) while this vibrational mode of three-layer LB film of the mixture (1: 1) of deuterated stearic acid and octadecylamine (octadecylammonium octadecanoate-d35, C18H37NH3+C17D35COO-) only shows a narrow band. The broad feature of the CH2 scissoring mode in octadecylammonium octadecanoate probably originates from the coupling between the chain of stearic acid and that of octadecylamine while this kind of coupling could be completely removed in octadecylammonium octadecanoate-d35.
Resumo:
A useful method for the synthesis of various gold nanostructures is presented. The results demonstrated that flowerlike nanoparticle arrays, nanowire networks, nanosheets, and nanoflowers were obtained on the solid substrate under different experimental conditions. In addition, surface-enhanced Raman scattering (SERS) spectra of 4-aminothiophenol (4-ATP) on the as-prepared gold nanostructures of various shapes were measured, and their shape-dependent properties were evaluated. The intensity of the SERS signal was the smallest for the gold nanosheets, and the flowerlike nanoparticle arrays gave the strongest SERS signals.
Resumo:
Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of similar to 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8 +/- 0.3)x10(6) and (2.7 +/- 0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0 +/- 0.3)x10(6) and (0.9 +/- 0.2)x10(7), respectively. The additional EF values by a factor of similar to 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures.
Resumo:
This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.
Resumo:
Stable monolayer of polyaniline doped with camphor sulfonic acid at the air-water interface has been obtained and has been successfully deposited by Langmuir-Blodgett technique onto CaF2 substrate. IR and UV-Vis-NIR spectra show that the doped molecules dedoped partially from the PANI backbone during the monolayer compression or deposition. Gas-sensing measurement indicates that the doped polyaniline LB film was sensitive to ethanol vapor at room temperature.
Resumo:
Atomic force microscopy (AFM) and lateral force microscopy (LFM) were used simultaneously to analyze a model membrane bilayer structure consisting of a phospholipid outer monolayer deposited onto organosilane-derivatized mica surfaces, which were constructed by using painting and self-assembly methods. The phospholipid used as outer monolayer was dimyristoylphosphatidylcholine (DMPC). The hydrocarbon-covered substrate that formed the inner half bilayer was composed of a self-assembly monolayer (SAM) of octadecyltrichloroorganosilane (OTS) on mica. SAMs of DMPC were formed by exposing hydrophobic mica to a solution of DMPC in decane/isobutanol and subsequently immersing into pure water. AFM images of samples immersed in solution for varying exposure times showed that before forming a complete monolayer the molecules aggregated into dense islands (2.2-2.6 nm high) on the surface. The islands had a compact and rounded morphology. LFM, coupled with topographic data obtained with the atomic force mode, had made possible the distinction between DMPC and OTS. The rate constant of DMPC growth was calculated. This is the first systematic study of the SAM formation of DMPC by AFM and LFM imaging. It reveals more direct information about the film morphology than previous studies with conventional surface analytical techniques such as infrared spectroscopy, X-ray, or fluorescence microscopy.