21 resultados para Voltage performance indices


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of doped fluorescent dye 4-(dicyanomethylene)-2-i-propyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTI) on the charge carrier injection, transport and electroluminescence (EL) performance in polyfluorene (PFO)-based polymer light-emitting diodes (PLEDs) were investigated by steady-state current-voltage (I-V) characteristics and transient EL measurements. A red EL from DCJTI was observed and the EL performance depended strongly on the DCJTI concentration. The analysis of the steady-state I-V characteristics at different DCJTI concentrations found that three regions was shown in the I-V characteristics, and each region was controlled by different processes depending on the applied electric field. The effect of the dopant concentration on the potential-barrier height of the interface is estimated using the Fowler-Nordheim model. The dopant concentration dependence of the current-voltage relationship indicated clearly the carrier trapping by the DCJTI molecules. The mobility in DCJTI: PFO changed significantly with the DCJTI concentration, and showed a nontrivial dependence on the doping level. The behavior may be understood in terms of the formation of an additional energy disorder due to potential fluctuation caused by the Coulomb interaction of the randomly distributed doping molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indium-tin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic thin film transistors based on pentacene are fabricated by the method of full evaporation. The thickness of insulator film can be controlled accurately, which influences the device operation voltage markedly. Compared to the devices with a single-insulator layer, the electric performance of devices by using a double-insulator as the gate dielectric has good improvement. It is found that the gate leakage current can be reduced over one order of magnitude, and the on-state current can be enhanced over one order of magnitude. The devices with double-insulator layer exhibit field-effect mobility as large as 0.14 cm(2)/Vs and near the zero threshold voltage. The results demonstrate that using proper double insulator as the gate dielectrics is an effective method to fabricate OTFTs with high electrical performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five rare earth complexes (Gd(acae)(3), Gd(TFacaC)(3), Eu(acaC)(3), Eu(TFacaC)(3) and Eu(TFacaC)(3)bipy; acac, acetylacetone; TFacac, 1,1,1-trifluoroacetylacetone; bipy, 2,2'-bipyridyl) were synthesized. By comparing the phosphorescence spectra of Gd(acac)(3) and Gd(TFacac)(3) the effect of the replacement of hydrogen by fluorine was examined. Organic light-emitting devices (OLEDs) based on the corresponding europium complexes as emissive layers were also fabricated by the spin-coating method. The triple-layer-type device with the structure glass substrate/ITO (indium-tin oxide)/PVK [poly(N-vinylcarbazole)]/(PVKEu)-Eu-.(TFacac)(3)bipy:PBD[2-(4-bibipyyl)-5-(4-t-butylbipyl-1,3,4-oxadiazole)]/PBD/Al (aluminum) exhibits a brighter red luminescence than those devices with Eu(acac)(3) and Eu(TFacac)(3) complexes as emissive centers upon applying a d.c. voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct methanol fuel cells (DMFCs) consisting of multi-layer electrodes provide higher performance than those with the traditional electrode. The new electrode structure includes a hydrophilic thin film and a traditional catalyst layer. A decal transfer method was used to apply the thin film to the Nafion(R) membrane. Results show that the performance of a cell with the hydrophilic thin film is obviously enhanced. A cell with the optimal thin film electrode structure operating at I M CH3OH, 2 atm oxygen and 90degreesC yields a current density of 100 mA/cm(2) at 0.53 V cell voltage. The peak power density is 120 mW/cm(2). The performance stability of a cell in a short-term life operation was also increased when the hydrophilic thin film was employed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, Nafion (R) membrane porosity changes were determined in aqueous ethanol solutions with different concentrations by weighing vacuum-dried and ethanol aqueous solution equilibrated membranes at room temperature. The ethanol crossover rate through Nafion (R)-115 membrane at different temperatures and different concentrations had been investigated in a fuel cell test apparatus by using membrane gets higher as ethanol solution gas chromatography analysis. The experimental results show that the swelling degree of Nafion (R) concentration increases. The ethanol crossover rate increases with ethanol concentration and temperature increment. The single direct ethanol fuel cell (DEFC) tests were carried out to investigate the effect of ethanol concentration on ethanol crossover and consequently, on the open circuit voltage and the cell performance of DEFC. It can be found that ethanol crossover presented a negative effect on the OCV and the cell performance of DEFC. It can also be found that an improved DEFC performance was obtained as temperature increased although the ethanol crossover rate increased with temperature increment. (c) 2005 Elsevier B.V. All rights reserved.