64 resultados para VICINITY
Resumo:
The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.
Resumo:
The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.
Resumo:
In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.
Resumo:
The problem of the concentration jump of a vapour in the vicinity of a plane wall, which consists of the condensed phase of the vapour, in a rarefied gas mixture of that vapour (A) and another 'inert' gas (B), is considered. The general formulation of the problem of determining the concentration-jump coefficient for dA is given. In the Knudsen layer the simplest model of Boley-Yip theory is used to simplify the Boltzmann equations for the binary gas mixture. The numerical calculation of the concentration jump coefficient for dA for various values of evaporation coefficient of A is illustrated for the case of the equilibrium concentration of B being much greater than that of A, for which experimental data are available.
Resumo:
Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.
Resumo:
For better understanding the mechanism of the occurrence of pipeline span for a pipeline with initial embedment, physical and numerical methods are adopted in this study. Experimental observations show that there often exist three characteristic phases in the process of the partially embedded pipeline being suspended: (a) local scour around pipe; (b) onset of soil erosion beneath pipe; and (c) complete suspension of pipe. The effects of local scour on the onset of soil erosion beneath the pipe are much less than those of soil seepage failure induced by the pressure drop. Based on the above observations and analyses, the mechanism of the occurrence of pipeline spanning is analyzed numerically in view of soil seepage failure. In the numerical analyses, the current-induced pressure along the soil surface in the vicinity of the pipe (i.e. the pressure drop) is firstly obtained by solving the N-S equations, thereafter the seepage flow in the soil is calculated with the obtained pressure drop as the boundary conditions along the soil surface. Numerical results indicate that the seepage failure (or piping) may occur at the exit of the seepage path when the pressure gradient gets larger than the critical value. The numerical treatment provides a practical tool for evaluating the potentials for the occurrence of pipe span due to the soil seepage failure.
Resumo:
A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60A degrees full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.
Resumo:
Beginning with a beam coherence polarization (BCP) matrix, we obtain an analytical intensity expression for radially polarized ultrashort pulsed laser beams that pass through an apertureless aplanatic lens. We also investigate the intensity distribution of radially polarized beams in the vicinity of the focus. The focal shift of these beams is studied in detail. The focal shift depends strongly on Z(F) that coincides with pi times the Fresnel number. (c) 2007 Optical Society of America.
Resumo:
Beta gallium oxide (beta-Ga2O3) single crystals were grown by the floating zone technique. The absorption spectra and the luminescence of the crystals were measured. The absorption spectra showed an intrinsic short cutoff edge around 260 nm with two shoulders at 270 and 300 nm. Not only the characteristic UV (395 nm), blue (471 nm) and green (559 nm) lights, but also the red (692 nm) light can be seen in the emission spectra. The deep UV light was attributed to the existing of quantum wells above the valence band and the red light was owed to the electron-hole recombination via the vicinity donors and acceptors. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The white cloud mountain minnow Tanichthys albonubes Lin is an endemic species to southern China and the genus has two species, Tanichthys albonubes Lin and Tanichthys micagemmae Freyhof et Herder. The distribution range of T. albonubes Lin and T. micagemmae is very narrow and only found in the mountain brooks of Baiyunshan Mountain (White Cloud Mountain), Huaxian Country and the vicinity of Guangzhou in Guangdong Province and Halong, Quang Ninh Province, Vietnam respectively. The wild populations of this fish had already been on the verge of extinction when Shu-Yan Lin first discovered it in 1932 at the Baiyunshan Mountain. It was believed to be extinct in the wild because there were no reports of this fish in the wild since 1980. In September 2003, a small and isolated population of the fish was discovered in a mountain puddle in the north vicinity of Guangzhou. Additional studies are needed to determine the survival and propagation of the released fish. The protection of their natural habitat should be implemented.
Resumo:
We present the research on the transmission characteristic of slow-light-mode in the photonic crystal line-defect waveguide bends on SOL After optimizing the structure parameters in the vicinity of the bends, the normalized transmission efficiency of slow-light-mode through the photonic crystal 60 degree and 120 degree waveguide bends are as high as 80% and 60% respectively, which are 10 times higher than that in the undeformed case. To slow down light further, we design novel coupled cavity waveguide bend structures with high quality-factor. High normalized transmission efficiency of 75% and low group velocity of c/170 ( c is the light velocity in vacuum) are realized. These results are beneficial to enhance the slow light effect of photonic crystal structures and improve the miniaturization and integration of photonic crystal slow light devices.
Resumo:
Time resolved magneto-optic Kerr rotation measurements of optically induced spin quantum beats are performed on heavily doped bulk (Ga,Mn)As diluted magnetic semiconductors (DMS). An effective g-factor of about 0.2-0.3 over a wide range of temperature for both as-grown and annealed (Ga,Mn)As samples is obtained. A larger effective g-factor at lower temperature and an increase of the spin relaxation with increasing in-plane magnetic field are observed and attributed to the stronger p-d exchange interaction between holes and the localized magnetic ion spins, leading to a larger Zeeman splitting and heavy-hole-light-hole mixing. An abnormal dip structure of the g-factor in the vicinity of the Curie temperature suggests that the mean-field model is insufficient to describe the interactions and dynamics of spins in DMS because it neglects the short-range spin correlation effect. (c) 2008 American Institute of Physics.
Resumo:
We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed.
Resumo:
We have investigated the transient electroluminescence (EL) onset of the double-layer light-emitting devices made from poly(N-vinylcarbozole) (PVK) doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris(8-hydroxy-quinoline) aluminium (Alq(3)). For the double-layered device in which PVK was doped with 0.1 wt% DCJTB, the EL onset of PVK lags that of DCJTB and Alq(3), while the EL onset of DCJTB and Alq(3) is simultaneous. However, the EL emission of the double-layered device of PVK/Alq(3) originates only from Alq(3). The results show that DCJTB dopants can not only help to tunnel electrons from Alq(3) zone to PVK but can also assist electrons transfer in PVK under high electric field by hopping between DCJTB molecules or from DCJTB to PVK sites at a low doping concentration of 0.1 wt%. When the DCJTB doping concentration is 4.0 wt%, the EL onset of Alq(3) lags that of DCJTB. The difference in the EL onsets of DCJTB, Alq(3) and PVK is attributed to the slow build-up of the internal space charge in the vicinity of the interface between PVK and Alq(3). The electron potential difference of the interface between Alq(3) and PVK doped by DCJTB can be adjusted by changing the DCJTB doping concentration in double-layer devices.
Resumo:
We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.