118 resultados para VERBANO ZONE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

由于采用非均匀布风,内旋流流化床的移动区空气量不足,导致燃烧不充分,温度较低。当移动区未流化时,密相区内存在较明显的温度不均匀性。随着移动区流速的提高,温度差迅速减小。当移动区流速超过2.0#mu#m后,密相区温度基本均匀一致。流动区流速对密相区温度均匀有一定的影响,流速越高,温度越均匀。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unsteady and three-dimensional model of the floating-half-zone convection on the ground is studied by the direct numerical simulation for the medium of 10 cSt silicon oil, and the influence of the liquid bridge volume on the critical applied temperature difference is especially discussed. The marginal curves for the onset of oscillation are separated into two branches related, respectively, to the slender liquid bridge and the fat liquid bridge. The oscillatory features of the floating-half-zone convection are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liquid bridge volume is a critical geometrical parameter in addition to the aspect ratio for onset of oscillation in the floating zone convection. The oscillatory features are generally divided into two characteristic regions: slender liquid bridge region and fat liquid bridge region. The oscillatory modes in two regions are discussed in the present paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress release model, a stochastic version of the elastic rebound theory, is applied to the large events from four synthetic earthquake catalogs generated by models with various levels of disorder in distribution of fault zone strength (Ben-Zion, 1996) They include models with uniform properties (U), a Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-scale heterogeneities (M). The results show that the degree of regularity or predictability in the assumed fault properties, based on both the Akaike information criterion and simulations, follows the order U, F, A, and M, which is in good agreement with that obtained by pattern recognition techniques applied to the full set of synthetic data. Data simulated from the best fitting stress release models reproduce, both visually and in distributional terms, the main features of the original catalogs. The differences in character and the quality of prediction between the four cases are shown to be dependent on two main aspects: the parameter controlling the sensitivity to departures from the mean stress level and the frequency-magnitude distribution, which differs substantially between the four cases. In particular, it is shown that the predictability of the data is strongly affected by the form of frequency-magnitude distribution, being greatly reduced if a pure Gutenburg-Richter form is assumed to hold out to high magnitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intended numerical investigation is carried out. The results indicate that, even if a perfect adhesive bond is preserved between the particles and matrix materials, the two-phase element cell model is unable to predict the strength increment of the particulate polymeric composites (PPC). To explore the main reinforcing mechanism, additional microscopic experiment is performed. An ''influence zone'' was observed around each particle which is measured about 2 to 10 micrometers in thickness for a glass-polyethylene mixture. Then, an improved computational model is presented to include the ''influence zone'' effect and several mechanical behaviors of PPC are well simulated through this new model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oscillatory features of floating half zone convection were experimentally studied by using the drop shaft facility of Japan Microgravity Center which supported microgravity period of 10 s. Coordinated measurements including free surface deformation and oscillation, temperature and flow pattern in both 1-g and micro-g environment were obtained. The oscillatory frequency and amplitude in micro-g condition were lower and larger than the ones in l-g condition, respectively. The results gave, at first time, the oscillatory features such as free surface wave in micro-g, coordinated measurements of more than two physical quantities in the micro-g, and transition of thermocapillary oscillatory convection from I-g to micro-g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simulation model of floating half zone with non-uniform temperature distribution at the upper rod and uniform temperature distribution at lower rod was discussed by numerical investigation in a previous paper. In the present paper, the experimental investigation of the simulation model is given generally. The results of the present model show that the temperature profile is quite different and the critical applied temperature difference is lower than the one of usual model with same geometrical parameters in most cases. The features of critical Marangoni number depending on the liquid bridge volume are also different from the ones of usual model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A device of mercury liquid bridge of floating half-zone is designed to experimentally explore thermocapillary convection and its instability of a low Prandtl number liquid. Noncontacted diagnostic techniques were developed to monitor surface flow and surface deformation. The surface flow and the influence of a growing surface film (or skin) on the flow were observed. It is shown that the film is a key factor in changing the behavior associated with the thermocapillary convection. The experiment indicates that the critical Marangoni number should be much higher than that expected by the numerical simulation. The condition and process of surface film growth are discussed. The surface oscillation of the mercury bridge wrapped with ''dirt-film'' was observed, and the characteristics and the frequency associated with this oscillation are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simulation model with adiabatic condition at the upper rod and constant temperature at the lower rod is studied numerically in this paper. The temperature distribution in a simulation model is closer to the one in the half part of a floating full zone in comparison with the one in a usual floating half zone model with constant temperature at both rods, because the temperature distribution of a floating full zone is symmetric for the middle plane in a microgravity environment. The results of the simulation model show that the temperature profiles and the how patterns are different from those of the usual floating half zone model. Another type of half zone model, with a special non-uniform temperature distribution at the upper rod and constant temperature at the lower rod, has been suggested by recent experiments. The temperature boundary condition of the upper rod has a maximum value in the center and a lower value near the free surface. This modified simulation model is also simulated numerically in the present paper. Copyright (C)1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a unified model for dislocation nucleation, emission and dislocation free zone is proposed based on the Peierls framework. Three regions are identified ahead of the crack tip. The emitted dislocations, located away from the crack tip in the form of an inverse pileup, define the plastic zone. Between that zone and the cohesive zone immediately ahead of the crack tip, there is a dislocation free zone. With the stress field and the dislocation density field in the cohesive zone and plastic zone being, respectively, expressed in the first and second Chebyshev polynomial series, and the opening and slip displacements in trigonometric series, a set of nonlinear algebraic equations can be obtained and solved with the Newton-Raphson Method. The results of calculations for pure shearing and combined tension and shear loading after dislocation emission are given in detail. An approximate treatment of the dynamic effects of the dislocation emission is also developed in this paper, and the calculation results are in good agreement with those of molecular dynamics simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A liquid bridge of a floating half zone consisting of liquid mercury sealed in a glass tube with nitrogen atmosphere was used for the experiment of thermocapillary convection with a low Prandtl number liquid. A non-contacted diagnostic method was developed to monitor the surface flow and the surface oscillation. A growing surface film (or skin) is a crucial source to suppress thermocapillary convection, and is discussed in this paper. For the case of a mercury Liquid bridge, the critical Marangoni number was obtained as 900, and the oscillatory frequency was around 5 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The g-jitter effects on the thermocapillary convection in liquid bridge of floating half zone were studied by numerical simulation for unsteady and axi-symmetric model in the cylindrical coordinate system. The g-jitter field was given by a steady microgravity field in addition to an oscillatory low-gravity field, and the effects on the flow field, temperature distribution and free surface deformation were analyzed numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, the coordinated measurements of the temperature profile inside the liquid bridge and the boundary variation of Free surface, in addition to other quantities, were obtained in the same time for the half floating zone convection. The results show that the onset of free surface oscillation is earlier than the one of temperature oscillation during the increasing of applied temperature difference, and the critical Marangoni numbers, defined usually by temperature measurement, are larger than the one defined by free surface measurement, and the difference depends on the volume of liquid bridge. These results induce the question, ''How to determine experimentally the critical Marangoni number?'' Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady and two-dimensional numerical simulation is applied to study the transition process from steady convection to turbulence via subharmonic bifurcation in thermocapillary convection of a liquid bridge in the half-floating zone. The results of numerical tests show clearly the fractal structure of period-doubling bifurcations, and frequency-locking at f/4, f/8, f/16 with basic frequency f is observed with increasing temperature difference. The Feigenbaum universal constant is given by the present paper as delta(4) = 4.853, which can be compared with the theoretical value 4.6642016.