187 resultados para Ultrasound extraction
An improved method for the extraction of low molecular weight organic acids in variable charge soils
Resumo:
Due to specific adsorption to variable charge soils, low molecular weight organic acids (LMWOAs) have not been sufficiently extracted, even if common extractants, such as water and 0.1 M sodium hydroxide (NaOH), were employed. In this work, the method for extracting LMWOAs in soils with 0.1 M NaOH was improved for variable charge soils; e.g. 1.0 M potassium fluoride (KF) with pH 4.0 was applied as an extractant jointed with 0.1 M NaOH based on its stronger ability to change the electrochemical properties of variable charge soils by specific adsorption. With the proposed method, the recoveries of oxalic, tartaric, malic, citric and fumaric acids were increased from 83 4, 93 1, 22 2, 63 +/- 5 and 84 +/- 3% to 98 +/- 2, 100 +/- 2, 85 +/- 2, 90 +/- 2 and 89 +/- 2%, respectively, compared with NaOH alone. Simultaneously, the LMWOAs in Agri-Udic Ferrosol with field moisture were measured with a satisfactory result.
Resumo:
Microcystin analysis in sediments and soils is considered very difficult due to low recovery for extraction. This is the primary limiting factor for understanding the fate of toxins in the interface between water and sediment in both the aquatic ecosystem as well as in soils. In the present study, a wide range of extraction solvents were evaluated over a wide range of pH, extraction approaches and equilibration time to optimize an effective extraction procedure for the analysis of microcystins in soils and lake sediments. The number of extractions required and acids in extraction solutions were also studied. In this procedure, EDTA-sodium pyrophosphate solution was selected as an extraction solvent based on the adsorption mechanism study. The optimized procedure proved to be highly efficient and achieved over 90% recovery. Finally, the developed procedure was applied to field soil and sediment sample collected from Chinese lakes during bloom seasons and microcystins were determined in six of ten samples. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A novel fiber coated with novel sol-gel (5,11,17,23-tetra-tert-butyl-25,27-dihydroxy-26,28-diglycidyloxycalix[4]arene/hydroxy-terminated silicone oil; diglycidyloxy-C[4]/OH-TSO) was prepared for use with headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) and electron capture detection (ECD), which was applied in order to determine nine chlorobenzenes in soil matrices. Due to the improved fiber preparation, which increases the percentage of calixarene in the coating, the new calixarene fiber exhibits very high extraction selectivity and sensitivity to chlorine-substituted compounds. Various parameters affecting the extraction efficiency were optimized in order to maximize the sensitivity during the chlorobenzene analysis. Interferences from different soil matrices with different characteristics were investigated, and the amount extracted was strongly influenced by the matrix. Therefore, a standard addition protocol was performed on the real soil samples. The linear ranges of detection for the chlorobenzenes tested covered three orders of magnitude, and correlation coefficients > 0.9976 and relative standard deviations (RSD) < 8% were observed. The detection limits were found at sub-ng/g of soil levels, which were about an order of magnitude lower than those given by the commercial poly(dimethylsiloxane) (PDMS) coating for most of the compounds. The recoveries ranged from 64 to 109.6% for each analyte in the real kaleyard soil matrix when different concentration levels were determined over the linear range, which confirmed the reliability and feasibility of the HS-SPME/GC-ECD approach using the fiber coated with diglycidyloxy-C[4]/OH-TSO for the ultratrace analysis of chlorobenzenes in complex matrices.
Resumo:
Ultrasonic solvent extraction combined with solid-phase microextraction (SPME) with calix[4]arene/hydroxy-terminated silicone (C[4]/OHTSO) oil coated fiber was used to extract phthalate acid esters (PAEs) plasticizers in plastic, such as blood bags, transfusion tubing, food packaging bag, and mineral water bottle for analysis by gas chromatography (GC). Both extraction parameters (i.e. extraction time, extraction temperature, ionic strength) and conditions of the thermal desorption in a GC injector were optimized by analysis of eight phthalates. The fiber shows wonderful sensitivity and selectivity to the tested compounds. Owing to its high thermal stability (380 degreesC), the carryover effect that often encountered when using conventional fibers can be reduced by appropriately enhancing the injector temperature. The method showed linear response over two to four orders of magnitude with correlation coefficients (r) better than 0.996, and limits of detection (LOD) ranged between 0.006 and 0.084 mug l(-1). The relative standard deviation values obtained were less than or equal to 10%. bis-2-Ethylhexyl phthalate (DEHP) was the sole analyte detected in these plastics and recoveries were in the ranges 95.5-101.4% in all the samples. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a method for trace level analysis of microcystins in water using solid-phase extraction and high performance liquid chromatography. The optimized condition enabled the determination of common microcystins at levels as low as 0.02 similar to 0.05 mug/L, and the liner range is from 0.1 mug/L to 50 mug/L. The method has been applied to the analysis of field sample from Dianchi lake.
Resumo:
Extraction experiments with spiking of C-13(12)-PCDD/Fs were performed with a variety of PCDD/Fs contaminated samples. The extraction recovery of PCDD/Fs was mainly influenced by PCDD/Fs concentration and the sample matrix. Generally, the first soxhlet extraction with toluene has suitable recovery. From the selected samples, only FAMS4 and 5 which are fly ashes with high concentration, the recovery of the first soxhlet extraction with 24 hr. is low, but PCDD/Fs were almost completely removed after 72 hr. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
p-GaN surfaces are nano-roughened by plasma etching to improve the optical performance of GaN-based light emitting diodes (LEDs). The nano-roughened GaN present a relaxation of stress. The light extraction of the LEDs with nano-roughened surfaces is greatly improved when compared with that of the conventional LEDs without nano-roughening. PL-mapping intensities of the nano-roughened LED epi-wafers for different roughening times present two to ten orders of enhancement. The light output powers are also higher for the nano-roughened LED devices. This improvement is attributed to that nano-roughened surfaces can provide photons multiple chances to escape from the LED surfaces.
Resumo:
Ultraviolet photo-lithography is employed to introduce two-dimensional (2D) photonic crystal (PC) structure on the top surface of GaN-based light emitting diode (LED). PC patterns are transferred to 460-nm-thick transparent indium tin oxide (ITO) electrode by inductively coupled plasma (ICP) etching. Light intensity of PC-LED can be enhanced by 38% comparing with the one without PC structure. Rigorous coupled wave analysis method is performed to calculate the light transmission spectrum of PC slab. Simulation results indicate that total internal reflect angle which modulated by PC structure has been increased by 7 degrees, which means that the light extraction efficiency is enhanced outstandingly.
Resumo:
This letter presents a new method for extracting the intrinsic frequency response of a p-i-n photodiode (PD) from the measured frequency response of the PD at different bias voltages. This method is much simpler than the conventional calibration method, since only the measured scattering parameters are required, and there is no need to calibrate the test fixtures and the lightwave source. Experiment shows that the proposed method is as accurate as the calibration method.
Resumo:
We describe a new method for extracting the intrinsic response of a laser diode from S-parameters measured using a calibrated vector network analyzer. The experimental results obtained using the new method are compared with those obtained using the optical modulation method and the frequency response subtraction method. Good agreement has been obtained, confirming the new method validity and accuracy. The new method has the advantages of obtaining the intrinsic characteristics of a laser diode with conventional measurements using a network analyzer.
Resumo:
Seismic sensors are widely used to detect moving target in ground sensor networks. Footstep detection is very important for security surveillance and other applications. Because of non-stationary characteristic of seismic signal and complex environment conditions, footstep detection is a very challenging problem. A novel wavelet denoising method based on singular value decomposition is used to solve these problems. The signal-to-noise ratio (SNR) of raw footstep signal is greatly improved using this strategy. The feature extraction method is also discussed after denosing procedure. Comparing, with kurtosis statistic feature, the wavelet energy feature is more promising for seismic footstep detection, especially in a long distance surveillance.