86 resultados para UTR
Resumo:
SIMP (source of immunodominant MHC-associated peptides) plays a key rote in N-linked glycosylation with the active site of oligosaccharyltransferase, being the source of MHC-peptides in the MHC I presentation pathway. In the present study, the SIMP gene has been cloned from grass carp Ctenopharyngodon idella by rapid amplification of cDNA ends (RACE). The full length of the cDNA sequence is 4384 bp, including a 1117 bp 5' UTR (untranslated region), a 2418 bp open reading frame, and a 849 bp 3' UTR. The deduced amino acids of the grass carp SIMP (gcSIMP) are a highly conserved protein with a STT3 domain and 11 transmembrane regions. The gcSIMP spans over more than 24,212 bp in length, containing 16 exons and 15 introns. Most encoding exons, except the first and the 15th, have the same length as those in human and mouse. The gcSIMP promoter contains many putative transcription factor binding sites, such as Oct-1, GCN4, YY1, Sp1, Palpha, TBP, GATA-1, C/EBP beta, and five C/EBP alpha binding sites. The mRNA expression of gcSIMP in different organs was examined by real-time PCR. The gcSIMP was distributed in all the organs examined, with the highest level in brain, followed by the level in the heart, liver, gill, trunk kidney, muscle, head kidney, thymus, and the lowest level in spleen. Furthermore, the recombinant gcSIMP has been constructed successfully and expressed in Escherichia coli by using pQE-40 vector, and the polyclonal antibody for rabbit has been successfully obtained, which was verified to be specific. Identification of gcSIMP will help to explore the function in fish innate immunity. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
SLP-76 is an important member of the SLP-76 family of adapters, and it plays a key role in TCR signaling and T cell function. Partial cDNA sequence of SLP-76 of common carp (Cyprinus carpio L.) was isolated from thymus cDNA Library by the method of suppression subtractive hybridization (SSH). Subsequently, the full length cDNA of carp SLP-76 was obtained by means of 3' RACE and 5' RACE, respectively. The full Length cDNA of carp SLP-76 was 2007 bp, consisting of a T-terminal untranslated region (UTR) of 285 bp, a T-terminal. UTR of 240 bp, and an open reading frame of 1482 bp. Sequence comparison showed that the deduced amino acid sequence of carp SLP-76 had an overall similarity of 34-73% to that of other species homotogues, and it was composed of an NH2-terminal domain, a central proline-rich domain, and a C-terminal SH2 domain. Amino acid sequence analysis indicated the existence of a Gads binding site R-X-X-K, a 10-aa-long sequence which binds to the SH3 domain of LCK in vitro, and three conserved tyrosine-containing sequence in the NH2-terminal domain. Then we used PCR to obtain a genomic DNA which covers the entire coding region of carp SLP-76. In the 9.2 k-long genomic sequence, twenty one exons and twenty introns were identified. RT-PCR results showed that carp SLP-76 was expressed predominantly in hematopoietic tissues, and was upregulated in thymus tissue of four-month carp compared to one-year old carp. RT-PCR and virtual northern hybridization results showed that carp SLP-76 was also upregulated in thymus tissue of GH transgenic carp at the age of four-months. These results suggest that the expression level of SLP-76 gene may be related to thymocyte development in teleosts. (c) 2007 Published by Elsevier Ltd.
Resumo:
Three interferon regulatory factor (IRF) genes, CaIRF-1, CaIRF-2 and CaIRF-7, and their promoters of snakehead (Channa argus) were cloned and characterized. The CaIRF-1 gene consists of ten exons, spans 4.3 kb and encodes a putative peptide of 299 aa. The CaIRF-2 gene consists of nine exons, spans 8 kb and encodes a putative peptide of 328 aa. The gene organizations of CaIRF-1 and CaIRF-2 are very similar to that of human IRF-1 and IRF-2 except more compact. Comparison of exon-intron organization of the two genes indicated a common evolutionary structure, notably within the exons encoding the DNA binding domain (DBD) of the two factors. The CaIRF-7 gene spans 4.1 kb and encodes a putative peptide of 437 aa. However, the gene organization of CaIRF-7 consisting of ten exons is different to human IRF-7a gene which has an intron in 5' UTR. Three CaIRFs share homology in N-terminal encompassing the DBD that contains a characteristic repeat of tryptophan residues. The promoters of CaIRF-1 and CaIRF-2 genes contain the conserved sites for NF-kappa B and Sp1. The gamma-IFN activation sites (GAS) were found in the promoters of CaIRF-1 and CaIRF-7. The promoter of CaIRF-7 contains conserved interferon stimulating response element (ISRE) which is characteristic of IFN-induced gene promoter, and suggests that there also exist intracellular amplifier circuit in fish IFN signal pathway. Moreover, the element GAAANN oriented in both directions is repeated in CaIRF promoter regions, which confers to further inducibility by IFN. The constitutive expression of CaIRF genes were found to increase obviously in response to induction by the known IFN-inducer poly I:C. (c) 2008 Published by Elsevier Ltd.
Resumo:
By suppression subtractive hybridization, rapid amplification of cDNA ends and gene walking methods, interferon stimulated genes (ISGs), Viperin and ISG15, and their promoters have been cloned and characterized from snakehead Channa argus. The Viperin cDNA was found to be 1474 nt and contain an open reading frame (ORF) of 1059 nt that translates into a putative peptide of 352 amino acid (aa). The putative peptide of Viperin shows high identity to that in teleosts and mammals except for the N-terminal 70 aa. The ISG15 cDNA was found to be 758 nt and contain an ORF of 468 nt that translates into a putative peptide of 155 aa. The putative peptide of ISG15 is composed of two tandem repeats of ubiquitin-like (UBL) domains, and a canonical conjugation motif (LRGG) at C-terminal. Viperin and ISG15 promoter regions were characterized by the presence of interferon stimulating response elements (ISRE) and gamma-IFN activation sites (GAS). ISRE is a feature of IFN-induced gene promoter and partially overlaps interferon regulatory factor (IRF) 1 and IRF2 recognition sites. GAS is responsible for the gamma-IFN mediated transcription. One conserved site for NF-kappa B was found in the promoter region of Viperin. This is the first report of conservative binding motif for NF-kappa B in accordance with the consensus sequence (GGGRN-NYYCC) among teleost ISG promoters. Moreover, there were also TATA, CAAT and Sp1 transcription factor sites in Viperin and ISG15 promoters. In 5' untranslated region (UTR), snakehead ISG15 gene contains a single intron, which differs from Viperin gene. The transcripts of Vipeirn and ISG15 mRNA were mainly expressed in head kidney, posterior kidney, spleen and gill. The expression levels in liver were found to increase obviously in response to induction by IFN-inducer poly I : C.
Resumo:
TNF receptor associated factor 1 (TRAF1) plays an important role in regulating the TNF signaling and protecting cells from apoptosis. In the present study, a TRAF1 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA is 2235 bp, including a 250 bp 5' UTR (untranslated region), a 1659 bp open reading frame, and a 326 bp 3'UTR. The polyadenylation signal (AATAAA, AATAA) and one mRNA instability motif (AUUUA) were found followed by a poly (A) tail in the 3'UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF1 (gcTRAF1). The putative amino acids of gcTRAF1 share 72% identity with the homologue in zebrafish. It is characterized by a zinc finger at the N-terminus and a TRAF domain (contains one TRAF-C and one TRAF-N) at the C-terminus. The identity of the TRAF domain among all the TRAF1 homologues in vertebrates varies from 52% to 58%, while the identities of TRAF-C were almost the same as 70%. The recombinant gcTRAF1 has been constructed successfully and expressed in Escherichia coli by using pET-32a expression vector. The polyclonal antibody for rabbit has been successfully obtained. The expression of gcTRAF1 in different organs was examined by real-time quantitative PCR and Western blotting, respectively. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of TRAF1 homologue molecule found in fish. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a crucial component of almost the entire tumor necrosis factor receptor superfamily signaling pathway. In the present study, a TRAF2 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The full-length cDNA is 3162 bp, including a 60 bp 5' untranslated region (UTR), a 1611 bp open reading frame, and a 1491 bp 3' UTR. The polyadenylation signal (AATAAA) and the mRNA instability motifs (ATTTTA, ATTTA) were followed by a poly(A) tail in the 3' UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF2 (gcTRAF2). Phylogenetic tree analysis clearly showed that gcTRAF2 is nearest to the TRAF2 gene of goldfish. The identity of gcTRAF2 with its homologs in other vertebrates ranges from 56% to 97%. It is characterized by one RING-type signature at the N-terminus, one zinc finger in the middle part, and one conserved TRAF domain consisting of a C-proximal (TRAF-C) subdomain and a N-proximal (TRAF-N) subdomain. The identity of TRAF-C among all TRAF2 homologs in vertebrates varies from 78% to 97%, whereas the identity of TRAF-N ranges from 56% to 100%. The recombinant gcTRAF2 has been expressed in Escherichia coli using pET-32a expression vector. The rabbit anti-gcTRAF2 polyclonal antibody was obtained. The expression of gcTRAF2 in different organs was examined by real-time quantitative polymerase chain reaction and Western blot analysis. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of a TRAF2 homolog molecule in fish.
Resumo:
Previous studies have demonstrated that germinal vesicle of amphibian oocyte contains small nuclear ribonucleoprotein polypeptide C (SNRPC). In this study, a putative member of SNRPC was identified from Carassius auratus gibelio oocyte cDNA library. Its full-length cDNA has an open reading frame of 201 nt for encoding a peptide of 66 an, a short 5'-UTR of 19 nt and a long 3'-UTR of 347 nt including a polyadenylation signal and poly- (A) tail, and the deduced amino acid sequence has 47% identity with the C-terminal of the zebrafish small nuclear ribonucleoprotein polypeptide C. Western blot analysis revealed its oocyte-specific expression. Immunofluorescence localization indicated that its gene product localized to numerous nucleoli within the oocytes and showed dynamic changes with the nucleoli during oocyte maturation. RT-PCR and Western blot analysis further revealed its constant presence in the oocytes and in the embryos until hatching. The data suggested that the newly identified CagOSNRPC might be a nucleolar protein. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
In study of gene expression profile in cloned embryos which derived from D. rerio embryonic nuclei and G. rarus enucleated eggs, cytochrome c oxidase subunit I (COXI) of G. rarus, exhibiting difference at expression level between cloned embryos and zebrafish embryo, was cloned. Its full cDNA length is 1654 bp and contains a 1551 bp open reading frame, encoding a 5.64 kDa protein of 516 amino acids. The alignment result shows that mitochondrion tRNA(ser) is co-transcripted with COXI, which just was the 3'-UTR of COXI. Molecular phylogenic analysis based on COXI indicates G. rarus should belong to Gobioninae, which was not in agreement with previous study according to morphological taxonomy. Comparison of DNA with cDNA shows that RNA editing phenomenon does not occur in the COXI of G. rarus.
Resumo:
A novel fish chemokine receptor gene, chemokine (C-X-C motif) receptor 3 (CXCR3)-like was isolated from the grass carp Ctenopharyngodon idella , with its full-length genomic sequence. The cDNA of grass carp CXCR3-like (gcCXCR3-like) consists of 1261 bp with a 49bp 5'-UTR and a 189 bp 3'-UTR. An open reading frame of 1023 bp encodes a 341-amino acid peptide, with seven transmembrane helices. The deduced amino acid sequence showed the same sequence identities (37.8%) with its counterparts in goat and human. The gcCXCR3-like gene consists of two exons, with one intervening intron, spaced over approximately 2 kb of genomic sequence. Phylogenetic analyses clearly demonstrated that the gcCXCR3-like resembles the CXCR3s of other vertebrates. Real-time PCR analysis showed that gcCXCR3-like was expressed in all tested organs except heart and the expression level of gcCXCR3-like was highest in brain. Flow cytometric analyses showed the positive rate of labelled leukocytes from the healthy grass carp was 17.3%, and the labelled leukocytes were divided into three types by cell sorting. Immunohistochemical localization revealed that gcCXCR3-like expressed in whole brain regions including cerebel, diencephalon, medulla oblongata, optic lobe, and rhinencephalon, and that the labelled leukocytes are actually populations of monocyte and/or phagocyte, lymphocyte and the granulocyte. It is considered that fish CXCR expression and their function may need to be investigated in both nervous and immune systems. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Natural resistance associated macrophage protein (Nramp) controls partially innate resistance to intracellular parasites. Its function is to enhance the ability of macrophages to kill pathogens. However, little is known about the structure and function of Nramp in lower vertebrates such as teleosts. We have recently isolated a cDNA encoding Nramp from Japanese flounder (Paratichthys olivaceus). The full-length cDNA of the Nramp is 3066 bp in length, including 224 bp 5' terminal UTR, 1662 bp encoding region and 1180 bp 3' terminal UTR. The 1662-nt open reading frame was found to code for a protein with 554 amino acid residues. Comparison of amino acid sequence indicated that Japanese flounder Nramp consists of 12 transmembrane (TM) domains. A consensus transport motif (CTM) containing 20 residues was observed between transmembrane domains 8 and 9. The deduced amino acid sequence of Japanese flounder had 77.30%, 82.71%, 82.67%, 79.64%, 80.72%, 90.97%, 91.16%, 60.14%, 71.48%, 61.69%, 72.37% identity with that of rainbow trout Nramp alpha and beta, channel catfish Nramp, fathead minnow Nramp, common carp Nramp, striped sea bass Nramp, red sea bream Nramp, mouse Nramp 1 and 2, human Nramp 1 and 2, respectively. RT-PCR indicated that Nramp transcripts were highly abundant in spleen, head kidney, abundant in intestine, liver and gill, and less abundant in heart. The level of Nramp mRNA in embryos gradually increases during embryogenesis from 4 h (8 cell stage) to 80 h (hatched stage) after fertilization. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The sequences and gene organisation of two LEAP-2 molecules (LEAP-2A and LEAP-2B) from rainbow trout, Oncorhynchus mykiss are presented. Both genes consist of a 3 exon/2 intron structure, with exon sizes comparable to known mammalian genes. LEAP-2A notably differs from LEAP-2B in having larger introns and a larger 3'UTR. The predicted proteins contain a signal peptide and prodomain, followed by a mature peptide of 41 aa containing four conserved cysteines. The RXXR cleavage site to release the mature peptide was also conserved. Both genes were found to be constitutively expressed in the liver, with expression in the intestine, and to a lesser extent the skin, evident after bacterial challenge. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Using conserved primers and the PCR reaction, the growth hormone (GH) gene and the 3'-UTR of the large yellow croaker (Pseudosciaena crocea) were amplified and sequenced. The gene structure was analyzed and compared to the GH genes of 5 other percoid fish downloaded from Genbank. Also the GH gene of the large yellow croaker and the genes from 14 Percoidei and 2 Labroidei species were aligned using Clustal X. A matrix of 564 bp was used to construct the phylogenetic tree using maximum parsimony and neighbor-joining methods. Phylogenetic trees by the two methods are identical in most of the clades with high bootstrap support. The results are also identical to those from morphological data. In general, this analysis does not support the monophyly of the families Centropomidae and Carangidae. But our GH gene tree indicates that the representative species of the families Sparidae and Sciaenidae are a monophyletic group.
Resumo:
Interferon (IFN) can induce an antiviral state via interferon-regulatory transcription factors (IRFs), which bind to and control genes directed by the interferon-stimulated response element (ISRE). Here we describe a fish IRF, termed CaIRF7, cloned from a subtractive cDNA library which is constructed with mRNAs obtained from crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells infected by UV-inactivated GCHV and mock-infected cells. CaIRF7 cDNA was found to be 1816 bp in length, with a 42 bp 5' UTR and a 508 bp 3' UTR. The open reading frame translates into 421 amino acids in which a DNA-binding domain (DBD) containing the repeated tryptophan motif and IRFs association domain have been identified. Like chicken GgIRF3, CaIRF7 was most similar to mammalian IRF7 with 27 to 30% identity overall and some 37% identity in their DBDs. A single transcript of 1.9 kb was detected in virally induced CAB cells by virtual Northern blotting. RT-PCR analysis revealed a wide tissue distribution of CaIRF7 constitutive expression, with detectable transcript in non-infected CAB cells and various tissues of healthy crucian carp. In addition, CaIRF7 expression was differentially increased by stimulation of the CAB cells with active GCHV, UV-inactivated GCHV or CAB IFN, indicating that the activation of CaIRF7 was directly regulated by IFN. (C) 2003 Published by Elsevier Ltd.
Resumo:
To understand the molecular events governing fish oogenesis, a multiple technique was used to identify the genes differentially expressed at different phases during fish oogenesis. This technique is a combination of suppression subtractive hybridization, SMART cDNA synthesis and RACE-PCR. Here we report the cDNA cloning and expression characterization of a novel SNX gene based on its differential transcription between previtellogenic and fully mature oocytes in naturally gynogenetic gibel carp. First, a cDNA fragment selectively expressed in previtellogenic oocytes was identified and used to screen a SMART cDNA library prepared from the same mRNA sample by RACE-PCR for cloning fully length cDNA. The full length cDNA was 1392-bp long and coded for a novel SNX protein with 225 amino acids. The 5' UTR had 72 bp and 3' UTR had 642 bp. Unlike most of maternal genes that are transcribed after vitellogenesis and stored in oocytes, this gene is expressed at a higher level in the previtellogenic oocytes and at a much lower level in fully matured oocytes. However, RT-PCR analysis of tissues showed it was ubiquitous transcription. The novel gene is named fish sorting nexin (fSNX), because it contains a conserved PX domain. The fact which major expression of the gene occurs in the previtellogenic oocytes suggests that it might have an important function in the oogenesis. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
To gain information on the integration pattern of pMThGH-transgene, 50 transgenes were recovered from F-4 generation of pMThGH transgenic common carp (Cyprinus carpio L,) and 33 recovered genes were analyzed. The restriction maps of these recovered genes were constructed by digestion with five kinds of enzymes. These transgenes can be classified into 4 types according to their restriction maps. Only one type of transgenes maintains its original molecular form, whereas the other three types are very different from the original one and vary each other on both molecular weight and restriction maps. This implies that the sequences of most transgenes have been deleted and/or rearranged during integration and inheritance. The results of PCR amplification and Southern blot hybridization indicate that MThGH in Type I transgene keeps intact but most of its sequence has been deleted in other three types. All these results suggest that transgenes in F-4 generation of transgenic carp are highly polymorphic. Two DNA fragments concerning integration site of transgenes were cloned from recovered transgenes, and found to be homologous to the 5'UTR of beta -actin gene of common carp and mouse mRNA for receptor tyrosine kinase (RTK), respectively.