360 resultados para Trajes de baño
Resumo:
The dot matrix hologram (DMH) has been widely used in anti-counterfeiting label. With the same technology and cell array configuration, we can encode to the incidence beam. These codes can be some image matrix grating with different grating gap and different grating orientation. When the multi-level phase diffractive grating is etched, the incidence beam on the cell appears as an encoding image. When the encoded grating and DMH are used in the same label synchronously, the technology of multi-encoded grating array enhances the anti-counterfeit ability.
Resumo:
Early glasses (about 1066 BC-220 AD) unearthed from Xinjiang of China were chemically characterized by using PIXE and ICP-AES. It was found that these glasses were basically attributed to PbO-BaO-SiO2 system, K2O-SiO2 system, Na2O-CaO-SiO2 system and Na2O-CaO-PbO-SiO2 system. The results from the cluster analysis showed that some glasses had basically similar recipe and technology. The PbO-BaO-SiO2 glass and the K2O-SiO2 glass were thought to come from the central area and the south of ancient China, respectively. The part of the Na2O-CaO-SiO2 glass (including the Na2O-CaO-PbO-SiO2 glass) might be imported from Mesopotamia, while the other part might be locally produced. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The earliest Chinese ancient glasses before the West Han Dynasty (200 BC) from different regions are studied. The glass samples were unearthed from Hunan, Hubei, Yunnan, Sichuan, Guizhou, Guangdong and Xinjiang of China. The chemical composition of these glasses samples is analyzed by proton induced X-ray emission (PIXE) technique, energy dispersive X-ray fluorescence (EDXRF) method and inductively coupled plasma atomic emission spectrometry (ICP-AES). It is shown that the glass chemical compositions belong to barium-lead silicate BaO-PbO-SiO2, potash soda lime silicate K2O (Na2O)-CaO-SiO2 (K2O/Na2O > 1), soda potash lime silicate Na2O (K2O)-CaO-SiO2 (K2O/Na2O < 1) and potash silicate K2O-SiO2 glass systems, respectively. The origins of the earliest Chinese ancient glasses are discussed from the archaeological and historical points of view. These four types of Chinese ancient glasses were all made in Chinese territory using local raw materials. The glass preparation technology was related to the Chinese ancient bronze metallurgy and proto-porcelain glaze technology. The glass technology relationship between the East and the West is analyzed at the same time.
Resumo:
结合外束质子激发X荧光(proton induced X-ray emission,PIXE)和能量色散X射线荧光(energy dispersive X-ray emission,EDXRF)分析技术,对中国新疆、湖北、四川、广东出土的古代镶嵌玻璃珠的化学成分进行了检测.结果表明:新疆拜城克孜尔墓地出土的西周-春秋时期镶嵌玻璃珠为CaO-MgO-SiO2玻璃,战国时期中国境内的PbO-BaO-SiO2和Na2O-CaO-SiO2镶嵌玻璃珠是同时存在的.本文亦对相关问题进行了一些讨论,并提出了部分今后的工
Resumo:
采用多元统计方法对四川、重庆、贵州、广西、广东地区出土的100余个古玻璃样品的化学成分数据进行了分析处理。结果表明:中国南方和西南地区的古玻璃制品主要由具有中国特色的铅钡硅酸盐玻璃和钾硅酸盐玻璃组成,可细分为五大系统类别:K2O-CaO(~10wt%)-SiO2系统、K2O-SiO2系统、PbO-BaO-SiO2系统、PbO(~25wt%)-BaO-SiO2系统、CaO-PbO(~40wt%)-BaO—SiO2系统。用因子分析探讨了我国汉代南方和西南地区的玻璃本地生产情况,表明该地区在汉代已经拥有自主生产
Resumo:
对化学成分体系的确定是中国古代玻璃研究中很重要的一个方面,为此,用外束质子激发X荧光技术(PIXE)、电感耦合等离子体原子发射光谱分析(ICP-AES)等方法,对新疆、湖北、河南和重庆等地区出土的一批战国时期的玻璃珠(包含镶嵌玻璃珠)、玻璃璧样品进行了检测。结果表明,战国时期中国境内同时存在PbO-BaO-siO2、K2O-SiO2、Na2O-CaO-SiO2三种硅酸盐玻璃,分布的地域范围从中国的新疆东部一直到长江、黄河流域,以及南方的四川、贵州等地区。中国古代的PbO-BaO-SiO2和K2O-SiO玻
Resumo:
采用改进的外束质子激发x射线荧光、电感耦合等离子体原子发射光谱分析等技术,对广西合浦地区出土的一批汉代古玻璃样品的化学成分和结构特性等进行了检测。结果表明:两汉时期,合浦地区的古代玻璃存在K2O—SiO2、PbO-BaO-SiO2、PbO—SiO2、Na2O-K2O-PbO-SiO2、(Na2O)K2O-CaO—SiO2等多种类型,但绝大多数为K2O—SiO2玻璃。表面风化可引起K2O-SiO2玻璃表面K2O等助熔剂的流失和富硅层的形成。综合化学成分以及器型特征,认为我国汉代K2O—SiO2玻璃制造技术可
Resumo:
abstract {Proton induced X-ray emission (PIXE) technique is an effective method for the chemical composition analysis of ancient glass samples without destruction. Chemical composition of the ancient glass samples dated from the Warring States Period (770-476 B.C.) to the Six Dynasties Period (220-589 A.D.), which were unearthed in Sichuan area, was quantitatively determined by the PIXE technique. The results show that the glass Bi (disc) and the glass eye beads of the Warring States Period all belong to the PbO-BaO-SiO2 system. According to the composition and shape, we infer that these glass Bi and eye beads were made in China. Whereas, the chemical compositions of the glass ear pendants and beads of the Six Dynasties Period are varied, including K2O-CaO-SiO2, K2O-SiO2 and other glass systems. Based on the obtained results and those from literatures, some questions related to the technical propagation of the ancient Chinese glass are discussed.}
Resumo:
:为提高大功率脉冲氙灯的封接强度,将微晶玻璃作为封接材料引入到氙灯封接应用中. 以 Bi2O3,ZnO,Al2O3,MgO,CaCO3,SiO2,BaO,H3BO3,P2O5,Na2O 为原料,通过高温熔融制备了大功率脉冲氙灯封接 用微晶玻璃样品. 测试了样品的热膨胀系数,并通过差热分析(Differential Thermal Analysis,DTA)对脉冲氙灯 微晶玻璃的封接温度进行了讨论,用X 射线衍射(X-ray diffraction ,XRD)表征了封接玻璃,并进行了分析. 将 制得的样品磨成玻璃粉末,制成膏剂状玻璃焊料,对大功率脉冲氙灯进行封接,得到大功率脉冲氙灯的微晶 玻璃封接件. 通过氦质谱检漏仪检测,1#、2#、4#封接件气密性良好,达到10-6 Pa.
Resumo:
Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 tellurite glass system was prepared and their density, characteristic temperatures and optical properties were determined and investigated. For the TeO2-BaO-La2O3-Er2O3 system, composition with 10 mol% BaO presented the highest thermal stability and good infrared transmittance. Intense and broad 1.53 mu m infrared fluorescence were observed under 977 nm diode laser excitation and the most full width at half-maximum (FWHM) is similar to 60nm. According to absorption spectrum, we calculated the optical parameters by means of Judd-Ofelt and McCumber theory such as the fluorescence lifetimes which are about 2.72-3.25 ms and the maximum emission cross-sections which are similar to 1.0pm(2) at 1.531 mu m. The sigma(e) x FWHM value of composition with 10 mol% BaO for gain bandwidth is similar to 600 exceeding those in silicon and phosphate glasses. Our results indicated this kind of tellurite glasses could be used as an ideal host glass for optical amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Absorption and luminescence spectra and optical amplification in bismuth-doped germanate silicate glass were investigated. Two kinds of bismuth ion valence states could exist in the glass. One is Bi2+, which has shown red luminescence, another might be Bi+, which is the active center for infrared luminescence. The infrared luminescence excited at 700, 800, and 980 nm should be ascribed to the electronic transition P-3(1) --> P-3(0) of Bi+ ions in three distinct sites. The shifting, broadening, and multiple configuration of the luminescence could be due to the randomly disorder of local environment and multiple sites of the active centers. In this glass, obvious optical amplification was realized at 1300 nm wavelength when excited at 808 and 980 nm, respectively.
Resumo:
By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 mu m is generated by a 5-mm long Tm:YAlO3 (4 at. %) laser operating at 18 degrees C with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(l%):GdVO4 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05 mu m is achieved with a slope efficiency of 9%.
Resumo:
Single-frequency output power of 7.3 W at 2.09 mu m from a monolithic Ho:YAG nonplanar ring oscillator (NPRO) is demonstrated. Resonantly pumped by a Tm-doped fiber laser at 1.91 mu m, the Ho:YAG NPRO produces 71% of slope efficiency with respect to absorbed pump power and nearly diffraction-limited output with a beam quality parameter of M-2 approximate to 1.1. (c) 2008 Optical Society of America
Resumo:
This paper reports that the TM3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Omega(2)=9.3155 x 10(-20) cm(2), Omega(4)=8.4103 x 10(-20) cm(2), Omega(6)=1.5908 x 10(-20) cm(2), the fluorescence lifetime is calculated to be 2.03 ms for F-3(4) -> H-3(6) transition, and the integrated emission cross section is 5.81 x 10(-18) cm(2). Room-temperature laser action near 2 mu m under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 mu m with spectral bandwidth of similar to 13.6 nm.