132 resultados para Trace Minerals
Resumo:
The release of heavy metals from the combustion of hazardous wastes is an environmental issue of increasing concern. The species transformation characteristics of toxic heavy metals and their distribution are considered to be a complex problem of mechanism. The behavior of hazardous dyestuff residue is investigated in a tubular furnace under the general condition of hazardous waste pyrolysis and gasfication. Data interpretation has been aided by parallel theoretical study based on a thermodynamic equilibrium model based on the principle of Gibbs free energy minimization. The results show that Ni, Zn, Mn, and Cr are more enriched in dyestuff residue incineration than other heavy metals (Hg, As, and Se) subjected to volatilization. The thermodynamic model calculation is used for explaining the experiment data at 800 degrees C and analyzing species transformation of heavy metals. These results of species transformation are used to predict the distribution and emission characteristics of trace elements. Although most trace element predictions are validated by the measurements, cautions are in order due to the complexity of incineration systems.
Resumo:
Dichlorosilane, a gas at normal temperature with a boiling point of 8.3 degrees C, is very difficult to sample and detect using conventional methods. We reduced phosphorus in dichlorosilane to PH3 by hydrogen at high temperature, then PH3 was separated from chlorosilanes by NaOH solution and from other hydrides by chromatographic absorption. Thus the problem of interference of chlorosilanes and other hydrides was overcome and PH, was measured by a double flame photometric detector at 526 nm. This method was sensitive, reliable and convenient and the sensitivity reached as low as 0.04 mu g/l.