73 resultados para Total internal reflection
Resumo:
Dynamic properties of proteins have crucial roles in understanding protein function and molecular mechanism within cells. In this paper, we combined total internal reflection fluorescence microscopy with oblique illumination fluorescence microscopy to observe directly the movement and localization of membrane-anchored green fluorescence proteins in living cells. Total internal reflect illumination allowed the observation of proteins in the cell membrane of living cells since the penetrate depth could be adjusted to about 80 nm, and oblique illumination allowed the observation of proteins both in the cytoplasm and apical membrane, which made this combination a promising tool to investigate the dynamics of proteins through the whole cell. Not only individual protein molecule tracks have been analyzed quantitatively but also cumulative probability distribution function analysis of ensemble trajectories has been done to reveal the mobility of proteins. Finally, single particle tracking has acted as a compensation for single molecule tracking. All the results exhibited green fluorescence protein dynamics within cytoplasm, on the membrane and from cytoplasm to plasma membrane.
Resumo:
Heterodimerization of integrin Mac-1 (alpha(M) beta(2)) Subunits plays important role on regulating leukocytes adhesion to extracellular matrix or endothelial cells. Here, using total internal reflection microscopy, we investigated the heterodimerization of integrin Mac-1 subunits at the single-molecule level in live cells. Individual alpha(M) subunit fused to the enhanced yellow fluorescent protein (eYFP) was imaged at the basal plasma membrane of live Chinese hamster ovary (CHO) cells. Through analysis of mean square displacement (MSD), diffusion coefficient, the size of restricted domain and fraction of molecules undergoing restricted diffusion, we found that as compared with the diffusion in the absence of beta(2) subunit, the diffusion of single-molecule of alpha(M)-YFP was suppressed significantly in the presence of beta(2) subunit. Thus, based on the oligomerization-induced trapping model, we suggested that in the presence of beta(2) subunit, the am subunit may form heterodimer with it. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In single-particle tracking (SPT), fluorescence video microscopy is used to record the motion images of single particle or single molecule. Here, by using a total-internal-reflection microscope equipped with an argon ion laser and a charge-coupled device (CCD) camera with high-speed and high-sensitivity, video images of single nanobeads in solutions were obtained. From the trajectories, the diffusion coefficient of individual nanobead was determined by the mean square displacements as a function of time. The sizes of nanobeads were calculated by Stokes-Einstein equation, and the results were compared with the actual values.
Resumo:
提出了一种新思路来确定单分子的三维取向,在全内反射荧光显微成像的基础上,在显微镜的油镜上加一个水层,水和油的折射率不同造成光程差,产生离焦,利用全内反射产生隐失波激发了单分子的纵向分量,并在探测器前增加了一个分光镜,把光路分成偏振方向相互垂直的两束光,使得探测器上的光场分布包含单分子三维取向的信息。推导了隐失场激发的偶极矩光场在探测器上的光强分布表达式,通过分析偏振方向相互垂直的两束光在探测器上的不同的强度分布,来判断单分子偶极矩的三维取向。
Resumo:
We describe high-efficiency, high-dispersion reflection gratings fabricated in bulk fused Silica illuminated by incident lights in the C + L bands as (de)multiplexers for dense wavelength division multiplexing (DWDM) application. Based on the phenomenon of total internal reflection, gratings with optimized profile parameters exhibit diffraction efficiencies of more than 90% under TM- and TE-polarized incident lights for 101-nm spectral bandwidths (1520-1620 nm) and can reach an efficiency of greater than 97% for both polarizations at a wavelength of 1550 nm. Without loss of metal absorption, without coating of dielectric film layers, and independent of tooth shape, this new kind of grating should be of great interest for DWDM application. (C) 2005 Optical Society of America.
Resumo:
The origin, character, analysis and treatment of subsurface damage (SSD) were summarized in this paper. SSD, which was introduced to substrates by manufacture processes, may bring about the decrease of laser-induced damage threshold (LIDT) of substrates and thin films. Nondestructive evaluation (NDE) methods for the measurement of SSD were used extensively because of their conveniences and reliabilities. The principle, experimental setup and some other technological details were given for total internal reflection microscopy (TIRM), high-frequency scanning acoustic microscopy (HFSAM) and laser-modulated scattering (LMS). However, the spatial resolution, probing depth and theoretic models of these NDE methods demanded further studies. Furthermore, effective surface treatments for minimizing or eliminating SSD were also presented in this paper. Both advantages and disadvantages of ion beam etching (IBE) and magnetorheological finishing (MRF) were discussed. Finally, the key problems and research directions of SSD were summarized. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
利用傅里叶模式理论分析了具有高衍射效率的全内反射式衍射光栅在TE和TM偏振态下的近场光分布特点,讨论了光栅结构参数以及入射角度对光栅内电场增强的影响。结果表明:全内反射光栅内部电场分布对偏振态较敏感,光栅槽深和占宽比对电场增强影响较小,光栅内的峰值电场随光栅周期增大而增大,并且峰值电场随着入射角度的增大而减小。在应用于高功率激光时,降低光栅内部的电场增强可以有效降低损伤风险。
Resumo:
The mode characteristics of SOI (silicon-on-insulator) submicron rib waveguides are very different from those of micrometer-sized ones. Using the full-vector film mode matching method, we propose a simple criterion to determine whether a waveguide mode is guided or not. The single-mode condition for deep-etched waveguides is obtained using this criterion. We also obtain the inherent TM mode leakage and sharp cancelation effects due to TE-TM mode coupling in shallow-etched rib waveguides from numerical simulations, which agree well with the analytical results based on total internal reflection and interference theories.
Resumo:
A folding nonblocking 4 X 4 optical matrix switch in simplified-tree architecture was designed and fabricated on a silicon-on-insulator wafer. To compress chip size, switch elements (SEs) were connected by total internal reflection mirrors instead of conventional S-bends. For obtaining smooth interfaces, potassium hydroxide (KOH) anisotropic chemical etching of silicon was employed. The device has a compact size of 20 X 3.2 mm(2) and a fast response of 8 +/- 1 mu s. Power consumption of 2 x 2 SE and excess loss per mirror were 145 mW and -1.1 dB, respectively. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
Whispering gallery modes (WGMs) in microcavities possess ultra-high cavity Q factor. Such microcavity are easy to be fabricated, so WGMs have attracted much attention in the area of photonics and integrated photonic circuits. It is well known that the effect of total internal reflection restricts the size of this mirocavity. Such drawback goes against the integration of photon. However, the photonic crystal microcavities (PCMC) make a breakthrough recently. The WGMs in the PCMC are possible to gain both ultra-high Q and ultra-small mode volume. In this paper, the property of the mode in photonic crystal ring cavity is analyzed by FDTD and PWE. By modifying the airholes in the corners of the ring cavity, we can obtain the WGM. Also the Q factor of WGM in photonic crystal ring cavity is calculated. This favors the design of the photonic crystal microcavity components.
Resumo:
SOI (Silicon on Insulator) based photonic devices, including stimulated emission from Si diode, RCE (Resonant Cavity Enhanced) photodiode with quantum structure, MOS (Metal Oxide Semiconductor) optical modulator with high frequency, SOI optical matrix switch and wavelength tunable filter are reviewed in the paper. The emphasis will be played on our recent results of SOI-based thermo-optic waveguide matrix switch with low insertion loss and fast response. A folding re-arrangeable non-blocking 4x4 matrix switch with total internal reflection (TIR) mirrors and a first blocking 16 x 16 matrix were fabricated on SOI wafer. The extinction ratio and the crosstalk are better. The insertion loss and the polarization dependent loss (PDL) at 1.55 mu m increase slightly with longer device length and more bend and intersecting waveguides. The insertion losses are expected to decrease 2-3 dB when anti-reflection films are added in the ends of the devices. The rise and fall times of the devices are 2.1 mu s and 2.3 mu s, respectively.
Resumo:
We investigate the large negative lateral displacements of TE polarized light beams reflected from or transmitted through an active slab surrounded by transparent medium. The large negative displacements can be achieved when the incidence angle of the beam is less than but close to the critical angle for total reflection. It is also shown that both the reflectivity and transmissivity of the beam that correspond to the large negative displacements can be enhanced by active medium. These phenomena may lead to convenient measurements and interesting applications in optical devices. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A deep binary silicon grating as high-extinction-ratio reflective polarizing beam splitter (PBS) at the wavelength of 1550 nm is presented. The design is based on the phenomenon of total internal reflection (TIR) by using the rigorous coupled wave analysis (RCWA). The extinction ratio of the rectangular PBS grating can reach 2.5×105 with the optimum grating period of 397 nm and groove depth of 1.092 μm. The effciencies of TM-polarized wave in the 0th order and TE-polarized wave in the −1st order can both reach unity at the Littrow angle. Holographic recording technology and inductively coupled plasma (ICP) etching could be used to fabricate the silicon PBS grating.
Resumo:
Ultraviolet photo-lithography is employed to introduce two-dimensional (2D) photonic crystal (PC) structure on the top surface of GaN-based light emitting diode (LED). PC patterns are transferred to 460-nm-thick transparent indium tin oxide (ITO) electrode by inductively coupled plasma (ICP) etching. Light intensity of PC-LED can be enhanced by 38% comparing with the one without PC structure. Rigorous coupled wave analysis method is performed to calculate the light transmission spectrum of PC slab. Simulation results indicate that total internal reflect angle which modulated by PC structure has been increased by 7 degrees, which means that the light extraction efficiency is enhanced outstandingly.