327 resultados para Ti-doped sapphire
Resumo:
Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150 Celsius. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.
Resumo:
In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported. It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.
Resumo:
By employing a continuous-wave (CW) Ti:sapphire tunable laser as a pumping source and a Cr4+:YAG single crystal as the saturable absorber (SA), a passively Q-switched Nd:YAG ceramic laser has been demonstrated at room temperature. With an absorbed pumping power of 541 mW at 808 nm, an average output power of 61 mW at 1064 nm has been obtained with 3.5 mu J pulse energy, 15 ns pulse width and 18.18 kHz repetition rate, and the corresponding slope-efficiency is 15%. The relationships between the pulse width, repetition rate, average output power, pulse energy, and peak power on the absorbed pumping power for different initial transmission of the Cr4+:YAG SA are discussed separately. The Nd:YAG ceramic is one of the most promising laser materials for compact, efficient, all-solid-state pulsed lasers.
Resumo:
Composite sapphire/Ti:sapphire crystals for high-power laser application were grown by the hydrothermal method. The results of the X-ray rocking curve analysis indicate high crystalline quality of the surface Al2O3 material. The strong bonding between the overgrown Al2O3 and seed Ti:Al2O3 crystals is indispensable for withstanding high thermal stresses produced by intense optical pumping. The optical loss at the boundary of the composite crystal is considerably low, indicating the lack of scattering centers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thin films of beta barium borate have been prepared by liquid phase epitaxy on Si2+-doped alpha-BaB2O4 (alpha-BBO, the high temperature phase of barium berate) (001) and (110) substrates. The results of X-ray diffraction indicate that the films show highly (001) preferred orientation on (001)-oriented substrates while the films grown on (110) substrates are textured with (140) orientation. The crystallinity of these films was found to depend on growth temperature, rotation rate, dip time and orientation of substrate. Growth conditions were optimized to grow films with (001) orientation on (001) substrates reproducibly. The films show second harmonic generation of 400 nm light upon irradiation with 800 nm Ti: Sapphire femtosecond laser light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
There are two different effects to generate group delay dispersion by multilayer thin film mirrors: chirper effect and Gires-Tournois effect. Both effects are employed to introduce desired dispersion in the designed mirror. Thus the designed mirror provides large dispersion throughout broad waveband. Such mirror can be used for dispersion compensation in Ti:sapphire femtosecond lasers. Most group delay dispersion of a 5-mm Ti:sapphire crystal can be compensated perfectly with only four bounces of the designed mirror.
Resumo:
We design and experimentally demonstrate some negative dispersion mirrors with optimized Gires-Tournois interferometers. The mirror structure is composed of 38 alternating Ta2O5 and SiO2 layers and could be regarded as two sections: high-reflectivity section consisting of a series of quarter-wavelength optical thickness stacks and negative-dispersion section consisting of only 13 layers. The designed mirrors exhibit the expected performance. These mirrors were fabricated by using ion beam sputtering. By adopting such mirrors, dispersion of a mode-locked femtosecond Ti:sapphire laser has been compensated for mostly. With two series of the mirrors, 32 fs and 15 fs pulses have been obtained respectively.
Resumo:
Equilibrium geometries, stabilities, and electronic properties of TinAl (n=1-13) clusters have been studied by using density-functional theory with local spin density approximation and generalized gradient approximation. The ground-state structures of TinAl clusters have been obtained. The resulting geometries show that the aluminum atom remains on the surface of clusters for n<9, but is slowly getting trapped beyond n=9, meanwhile, the Al atom exhibits a valent transition from monovalent to trivalent. The geometric effects and electronic effects clearly demonstrate the Ti4Al cluster to be endowed with special stability. The studies on the bonds indicate the change from ionic to metalliclike. (C) 2004 American Institute of Physics.
Resumo:
Stable self-starting mode-locking states in a compact Ti: sapphire laser incorporating a home-made SBR with low loss double quanturn-well and low temperature and surface state hybrid absorber are investigated experimentally. The three mode-locking states, i.e. the passive mode-locking with a saturable absorber, the solition mode-locking and the Kerr-lens mode-locking have been successfully demonstrated. In this laser, chirped mirrors are used for dispersion compensation, and the 18 fs pulses are produced from the Kerr-lens mode-locking at 4.5W pump power, and output power is 150mW.
Resumo:
通过热沉积系数研究在激光提取条件下掺杂原子分数为1.0%的Nd:YAG陶瓷激光器中热沉积问题.热沉积系数定义为热沉积功率与激光器输出功率之比.在理论分析基础上,通过测量激光器斜率效率来间接测定热沉积系数,实验测定的热沉积系数值为0.63.建立激光提取条件下Nd:YAG陶瓷发热模型,讨论了影响热沉积系数的主要因素.结果表明:热沉积系数对Nd:YAG陶瓷的辐射量子效率、交叠效率以及激光提取效率的变化非常敏感.为有效减少介质内热沉积,在激光器优化设计中交叠效率和激光提取效率是需要着重考虑的参数.所得结果可为进一
Resumo:
Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants c and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interlayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.