59 resultados para TUBES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of adding internal fins to the injection tube of a storage cell target filled with a polarized atomic beam source has been studied. The tube conductance and the atomic beam intensity at the exit of the injection tube have been measured, observing an unexpectedly large beam loss. Simulations of the atomic beam reproduce the observed attenuation only when the non-zero azimuthal component of the atom's velocity is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We produced silver tubes with an outer diameter of 1 mu m, wall thickness of 200 nm, and length of hundreds of micrometers by hydrothermal treatment of aqueous solutions of AgNO3 and hyperbranched polyglycidol (HPG) at 165 degrees C. The surfaces of the silver tubes were chemically modified by HPG, which was confirmed by FTIR of the silver tubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-crystal tubular products on the millimetre scale have been synthesized from water-soluble calixarene and phenanthroline in the presence of lanthanides by a hydrothermal method, in which the extended structures contain some 1D infinite channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple way to synthesize beta-Ga2O3 nanoribbons and tubes by electrospinning is introduced. The diameters of the electrospun fibers range from 150 nm to 2.5 mu m and their lengths reach up to several millimeters. The relationship among precursors, precursor concentrations, and crystal growth of beta-Ga2O3 nanoribbons and tubes are discussed. The structures of beta-Ga2O3 fibers have been investigated by various methods such as thermogravimetric (TG) and differential thermal analysis (DTA), X-ray diffraction, FT-IR, Raman spectra, scanning electron micrograph (SEM), and transmission electron micrograph (TEM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heat transfer coefficients for horizontally immersed tubes have been studied in model internally circulating fluidized bed (ICFB) and pilot ICFB incinerators. The characteristics in the ICFB were found to be significantly different from those in a bubbling bed. In ICFB, there is a flowing zone with high velocity, a heat exchange zone, and a moving zone with low velocity. The controllable heat transfer coefficients in ICFB strongly depend on the fluidized velocity in the flowing zone, and also the flow condition in the moving zone. The heat exchange process and suitable bed temperature can be well controlled according to this feature. Based on the results of experiments, a formulation for heat transfer coefficient has been developed. These results were applied to an external superheater of a CFB incinerator with a 450 degreesC steam outlet in a waste-to-energy pilot cogeneration plant of 12 MW in Jiaxing City, China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

实验研究了垂直向上窄缝环形管内流动沸腾换热物性和汉型变化,窄缝宽度为1-2.5mm,实验结果表明,窄缝内沸腾传热有明显强化,并出现了区别于常规尺寸管内的两相流型和局癌换热特性.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to assess the safety of high-energy solid propellants, the effects of damage on deflagration-to-detonation transition (DDT) in a nitrate ester plasticized polyether (NEPE) propellant, is investigated. A comparison of DDT in the original and impacted propellants was studied in steel tubes with synchronous optoelectronic triodes and strain gauges. The experimental results indicate that the microstructural damage in the propellant enhances its transition rate from deflagration to detonation and causes its danger increase. It is suggested that the mechanical properties of the propellant should be improved to restrain its damage so that the likelihood of DDT might be reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a shock wave interacts with a group of solid spheres, non-linear aerodynamic behaviors come into effect. The complicated wave reflections such as the Mach reflection occur in. the wave propagation process. The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves. This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres. A schlieren photography was applied to visualize the various shock waves passing through solid spheres. Pressure measurements were performed along different downstream positions. The experiments were conducted in both rectangular and circular shock tubes. The data with respect to the effect of the sphere array, size, interval distance, incident Mach number, etc., on the shock wave attenuation were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is devoted to study of the slip phenomenon between phases in water-oil two-phase flow in horizontal pipes. The emphasis is placed on the effects of input fluids flow rates, pipe diameter and viscosities of oil phase on the slip. Experiments were conducted to measure the holdup in two horizontal pipes with 0.05 m diameter and 0.025 m diameter, respectively, using two different viscosities of white oil and tap water as liquid phases. Results showed that the ratios of in situ oil to water velocity at the pipe of small diameter are higher than those at the pipe of big diameter when having same input flow rates. At low input water flow rate, there is a large deviation on the holdup between two flow systems with different oil viscosities and the deviation becomes gradually smaller with further increased input water flow rate. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work. co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 turn in diameter. Each tube includes two 10 m lone pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high flow. stratified flow. -speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood-Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/ non-Newtonian liquid. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

'Notch-sensitive regions' have been observed during a series of experimental investigations into the dynamic plastic behaviour and failure of thin-walled metallic radially notched circular rings with are-shaped supports subjected to concentrated impact loads. The experimental results show that the exterior notches at some regions have no effect on the deformation of the rings, but do have effect at the remaining regions. The notch-sensitive region is theoretically determined by using the equivalent structures technique; fairly good agreement has been reached between the simple theory and the experimental results. Both dimensional and theoretical analyses prove that whether a plastic hinge formed or not at the notched section does not depend on the mean radius of the ring and the input kinetic energy. It depends on the weak coefficient of the notched section and the angle of the support. Generally speaking, there are mainly three failure modes for a notched circular ring with are-shaped support under impact loading: Mode I, large inelastic deformation when the notch is outside the sensitive region, in this case the ring deforms as a normal one; Mode II, large inelastic deformation only at some part of the ring and tearing occurred at the notched sections; Mode III, large inelastic deformation and total rupture occurred at the notched sections. It is believed that the present study could assist the understanding of the dynamic behaviour and failure of other kinds of nonstraight components with macroscopic imperfections under impulsive loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Keller proposed that a building, a mechanical installation or a body wrapped bya layer of foam plastics may be an efficient means for protection from damage ofblast wave. However, the practical effect was beyond expectation. For example, agunner wearing the foam plastics-padded waistcoat was injured more seriously by theblast wave from a muzzle. Monti took the foam plastics as homogeneous two-phasemedium and analyzed it with the theory of dusty flow. The obtained results showthat the peak pressure behind the reflected shock wave from rigid wall with foamcoat exceeds obviously that without foam coat under the same condition. Gel'fand,Patz and Weaver made experimental observations by means of shock tubes and veri-

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the general Mach number equation is derived, and the influence of typical energy forms in the solar wind is analysed in detail. It shows that the accelerating process of the solar wind is influenced critically by the form of heating in the corona, and that the transonic mechanism is mainly the result of the adjustment of the variation of the crosssection of flowing tubes and the heat source term.The accelerating mechanism for both the high-speed stream from the coronal hole and the normal solar wind is similar. But, the temperature is low in the lower level of the coronal hole and more heat energy supply in the outside is required, hence the high speed of the solar wind; while the case with the ordinary coronal region is just the opposite, and the velocity of the solar wind is therefore lower. The accelerating process for various typical parameters is calculated, and it is found that the high-speed stream may reach 800 km/sec.