35 resultados para TOXIC PLUMES
Resumo:
Tetrahymena thermophila BF5 produce heat by metabolism and movement. Using a TAM air isothermal microcalorimeter, the power-time curves of the metabolism of T thermophila BF5 during growth were obtained and the action on them by the addition of Cr(VI) were studied. The morphological change with Cr(VI) coexisted and biomass change during the process of T thermophila BF5 growth were studied by light microscope. Chromium has been regarded as an essential trace element for life. However, hexavalent chromium is a known carcinogen, mutagen, cytotoxicant and strong oxidizing agent. Cr(VI) of different concentration have different effects on T thermophila BF5 growth with the phenomenon of low dose stimulation (0-3 x 10(-5) mol L-1) and high dose inhibition (3 x 10(-5) to 2.4 x 10(-4) mol L-1). The relationship between the growth rate constant (k) and c is a typical U-shaped curve, which is a characteristic of hormesis. T thermophila BF5 cannot grow at all when the concentration of Cr(VI) is up to 2.4 x 10(-4) mol L-1. The microscopic observations agree well with the results obtained by means of microcalorimetry. And T thermophila BF5 had obviously morphological changes by the addition of Cr(VI). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This is the first experimental study to compare difference in the development of tolerance against toxic Microcystis among multi-species of cladocerans (Daphnia, Moina and Ceriodaphnia) pre-exposed to two M. aeruginosa PCC7820 strains (MC-containing and MC-free). Zooplankton were divided into S population (fed Scenedesmus), M-F population (fed Scenedesmus + MC-free Microcystis), and M-C population (fed Scenedesmus + MC-containing Microcystis). M-F and M-C populations were pre-exposed to Microcystis strains for 4 weeks, and their newborns were collected for experiments. A pre-exposure to MC-containing or MC-free Microcystis increased tolerance against toxic Microcystis. The marked increases in survival rate and median lethal time (LT50, 100-194% increase) in the M-C population of Ceriodaphnia suggest that small-sized cladocerans may develop stronger tolerance against Microcystis than large-sized ones when both groups are exposed to toxic Microcystis. This may explain why dominant Daphnia is usually replaced by small-sized cladocerans when cyanobacteria bloomed in summer in eutrophic lakes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Three enclosures (10 x 10 x 1.5-1.3 m in depth) were set beside Dianch Lake, Kunming, People's Republic of China, for the period from July 28 to August 26, 2002. The enclosures were filled with cyanobacterial (Microcystis aeruginosa) water bloom-containing lake water. Lake sediment that contained macrophytes and water chestnut seeds was spread over the entire bottom of each enclosure. Initially, 10 g/m(2) of lysine was sprayed in Enclosure B, and 10 g/m(2) each of lysine and malonic acid were sprayed together in Enclosure C. Enclosure A remained untreated and was used as a control. The concentrations of lysine, malonic acid, chlorophyll a, and microcystin as well as the cell numbers of phytoplankton such as cyanobacteria, diatom, and euglena were monitored. On day 1 of the treatment, formation of cyanobacterial blooms almost ceased in Enclosures B and C, although Microcystis cells in the control still formed blooms. On day 7 Microcystis cells in Enclosure B that had been treated with lysine started growing again, whereas growth was not observed in Microcystis cells in Enclosure C, which had been treated with lysine and malonic acid. On day 28 the surface of Enclosure B was covered with water chestnut (Trapa spp.) and the Microcystis blooms again increased. In contrast, growth of macrophytes (Myriophllum spicatum and Potamogeton crispus) was observed in Enclosure C; however, no cyanobacterial blooms were observed. Lysine and malonic acid had completely decomposed. The microcystin concentration on day 28 decreased to 25% of the initial value, and the pH shifted from the initial value of 9.2 to 7.8. We concluded that combined treatment with lysine and malonic acid selectively controlled toxic Microcystis water blooms and induced the growth of macrophytes. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Microcystin-LR, a specific and potent hepatotoxin, was tested for its effects oil loach embryo-larval and juvenile development, The results of this study showed that loach embryos were more sensitive when exposed to microcystin-LR at a later than at an earlier stage of development, Juveniles were far less sensitive to MC-LR than were embryos and larvae. Mortality and developmental abnormality were proven to be dose-dependent and to be stage-specific sensitive. Among the abnormal changes noted were: pericardial edema and tubular heart, bradycardia, homeostasis, poor yolk resumption. small head, curved body and tail, and abnormal hatching, Liver and heart were the main targets of microcystin-LR toxicity. Ultrastructural analysis documented a complex set of sublethal effects of microcystin-LR on loach hepatocytes, chiefly including morphological alteration in nuclear and RER of loach liver cells. fit addition, microcystin-LR was lethal to loach juvenile in the subacute (7 days) exposure (LC50) = 593.3 mug/l). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The sexual ratio of Gobiocypris rarus exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 17 beta -estradiol from embryo to sexually mature revealed feminization and overdevelopment of connective tissue in male fish gonad in 2-30 pg/L TCDD concentration range. Daphnia magna was not sensitive to the high dose of TCDD (0.1-1000 ng/ml), but the reproduction of D. magna treated with TCDD decreased after the 8th day. 7-Ethoxyresorufin-O-deethylase (EROD) activities in newly fertilized eggs of G. rarus exposed to TCDD dosage groups (1000-100,000 pg/L) were significantly induced and increased with TCDD concentrations at the early life stage, while no difference was found between low TCDD dosage groups (<100 pg/L), but a good relationship between the EROD activity and the TCDD concentration was observed during a long-term developmental stage. There was a pericardial edema formed in a 2-week yolk-sac at the concentration of 1000 pg/L TCDD. But in the exposure group (2 pg/L TCDD for 120 days), the cell nuclei of hepatocytes was far from the center and packed toward the cell membrane; the cristae of most mitochondria in the cell dropped and collapsed; the rough endoplasmic reticulum broke into fragments; and numerous lipid droplets formed in the cell. (C) 2001 Academic Press.
Resumo:
Electrochemical measurement of respiratory chain activity is a rapid and reliable screening for the toxicity on microorganisms. Here, we investigated in-vitro effects of toxin on Escherichia coli (E. coli) that was taken as a model microorganism incubated with ferricyanide. The current signal of ferrocyanide effectively amplified by ultramicroelectrode array (UMEA), which was proven to be directly related to the toxicity. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. The electrochemical responses to 3,5-dichlorophenol (DCP) under the incubation times revealed that the toxicity reached a stable level at 60 min, and its 50% inhibiting concentration (IC50) was estimated to be 8.0 mg L-1. At 60 min incubation, the IC50 values for KCN and As2O3 in water samples were 4.9 mg L-1 and 18.3 mg L-1, respectively. But the heavy metal ions, such as Cu2+ Pb2+ and Ni2+, showed no obvious toxicity on E. coli.
Resumo:
[1] The evolution of freshwater plumes and the associated salinity fronts in the northern Bay of Bengal ( henceforth the bay) is studied using rotated empirical orthogonal function (REOF) analysis and extended associate pattern analysis (EAPA). The results show that sea surface salinity distribution is featured by eastern-bay and western-bay plumes in the northern bay during different seasons. The western-bay plume begins in early July, peaks in late August, and then turns into a bay-shaped plume with the two plumes in either side of the bay, which peaks in late October. The southward extension of the western-bay plume can be explained by the southwestward geostrophic flow associated with the cyclonic gyre in the northern bay, which counters the northeastward Ekman drift driven by wind stress. The offshore expansion of the western-bay plume is induced by the offshore Ekman drift which also produces a salinity front near the east coast of India. The bay-shaped plume appears when the cyclonic gyre shifts westward and a weak anticyclonic gyre occupies the northeastern bay. As the season advances, the western part of the bay-shaped plume decays while the eastern part persists until the following June, which is believed to be associated with the anticyclonic gyre in the northern bay. The evolution of the plumes except the eastern part of the bay-shaped plume in fall can be partly explained by the seasonal variation of mass transport associated with the Sverdrup balance. The fact that the western-bay (eastern-bay) plume appears when surface freshwater flux in the northeastern bay increases ( decreases) dramatically suggests that the plumes are not produced directly by surface freshwater flux. River discharge seems to be the freshwater source for the plumes and has little to do with the evolution of the plumes.