91 resultados para TIME 3-DIMENSIONAL ECHOCARDIOGRAPHY
Resumo:
Protein multilayers composed of avidin and biotin-labeled antibody (bio-Ab) were prepared on gold surface by layer-by-layer assembly technology using the high specific binding constant (K-a: approximate to 10(15) M-1) between avidin and biotin. The assembly process of the multilayer films was monitored by using real-time BIA technique based on surface plasmon resonance (SPR). The multilayer films were also characterized by electrochemical impedance spectroscopy (EIS) and reflection absorption Fourier transform infrared spectroscopy (FTIR). The results indicate that the growth of the multilayer is uniform. From response of SPR for each layer, the stoichiometry S for the interaction between avidin and bio-Ab is calculated to be 0.37 in the multilayer whereas 0.82 in the first layer. The protein mass concentration for each layer was also obtained. The schematic figure for the multilayer assembly was proposed according to the layer mass, concentration and S value. The utility of the mutilayer films for immunosensing has been investigated via their subsequent interaction with hIgG. The binding ability of the multilayer increased for one to three layers of antibody, and then reach saturation after the fourth layer. These layer-by-layer constructed antibody multilayers enhance the binding ability than covalently immobilized monolayer antibody. This technology can be also used for construction of other thin films for immunosensing and biosensor.
Resumo:
The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation. Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone. From the measurements we obtain (1) the primary shock wave caused by the impact of the blunt body on free surface; (2) the vapor pressure inside the cavity; (3) the secondary shock wave caused by pulling away of the cavity from free surface; and so on. The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography. The periodic and 3 dimensional motion of the supercavitation is revealed. The experiment is carried out at room temperature.
Resumo:
Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Our recent progress in numerical studies of bluff body flow structures and a new method for the numerical analysis of near wake flow field for high Reynolds number flow are introduced. The paper consists of three parts. In part one, the evolution of wake vortex structure and variation of forces on a flat plate in harmonic oscillatory flows and in in-line steady-harmonic combined flows are presented by an improved discrete vortex method, as the Keulegan-Carpenter number (KC) varies from 2 to 40 and ratios of U-m to U-0 are of O(10(-1)), O(10) and O(10), respectively. In part 2, a domain decomposition hybrid method, combining the finite-difference and vortex methods for numerical simulation of unsteady viscous separated flow around a bluff body, is introduced. By the new method, some high resolution numerical visualization on near wake evolution behind a circular cylinder at Re = 10(2), 10(3) and 3 x 10(3) are shown. In part 3, the mechanism and the dynamic process for the three-dimensional evolution of the Karman vortex and vortex filaments in braid regions as well as the early features of turbulent structure in the wake behind a circular cylinder are presented numerically by the vortex dynamics method.
Resumo:
To gain some insight into the behaviour of low-gravity flows in the material processing in space, an approximate theory has been developed for the convective motion of fluids with a small Grashof number Gr. The expansion of the variables into a series of Gr reduces the Boussinesq equation to a system of weakly coupled linearly inhomogeneous equations. Moreover, the analogy concept is proposed and utilized in the study of the plate bending problems in solid mechanics. Two examples are investigated in detail, i. e. the 2-dimensional steady flows in either circular or square infinite closed cylinder, which is horizontally imposed at a specified temperature of linear distribution on the boundaries. The results for stream function ψ, velocity u and temperature T are provided. The analysis of the influences of some parameters such as the Grashof number Gr and the Prandtl number Pr, on motions will lead to several interesting conclusions. The theory seems to be useful for seeking for an analytical solutions. At least, it will greatly simplify the complicated problems originally governed by the Navier-Stokes equation including buoyancy. It is our hope that the theory might be applicable to unsteady or 3-dimensional cases in future.
Resumo:
In this paper, fundamental equations of the plane strain problem based on the 3-dimensional plastic flow theory are presented for a perfectly-plastic solid The complete governing equations for the growing crack problem are developed. The formulae for determining the velocity field are derived.The asymptotic equation consists of the premise equation and the zero-order governing equation. It is proved that the Prandtl centered-fan sector satisfies asymptotic equation but does not meet the needs of hlgher-order governing equations.
Resumo:
流动分离直接关系到压气机运行的安全性与效率,对分离流动的研究是叶轮机械真实流动研究中的一个重大课题。本文针对三维压气机单转子叶片中截面所构成的三维直叶栅跨音速分离流开发了通用数值计算程序。该程序基于B-L湍流模型及高精度差分方法。多种工况的数值计算显示本程序结果与实验值吻合比较理想,验证了程序的正确性。10°攻角下分离区脉动压力的频谱与实验结果的数量级吻合,说明本程序能够较好地模拟大攻角分离流这种非定常复杂流动,为了提高计算规模及计算速度,作者对程序进行了并行化并针对微机机群系统进行了并行优化,实际计算表明本程序具有较高的并行效率。
Resumo:
本文根据面-面接触模型,写出了三维离散元的物理方程及运动方程,对于接触刚度、阻尼系数、时步、计算控制及块体的滑动失稳判据等作了讨论。在NURBM-3D 长方体单元基础上改进了其划分单元的算法,依据岩体中三组真实的节理面划分平行六面体单元,实现了网格的自动剖分,从而可以将单元视为真实的岩块,更客观地体现了节理面对岩体稳定性的影响。运用改进后的三维离散元方法,编制了计算程序,对三峡工程永久船闸高连坡开挖进行了模拟。计算过程包括初始地应力场模拟、岩体开挖过程两个阶段。模拟计算首先给出了为水平、垂直节理面所切割的长方体单元情况下的应力场分析,考证了程序的可行性。将已有的三峡永久船闸实测节理简化为三组节理,完成了初始地应力场的模拟,给出了分四步开挖后的岩体位移场和应力场,计算出岩体开挖过程中产生滑动块体的位置,其结果可以定性地表明:沿节理面的块体滑动是边坡失稳的主要模式。编制的后处理程序提供了计算数据库与绘图软件Origin的接口,可以画出任意剖面或节理面上的应力等值线、位移矢量图及滑动块体分布图,由此可以直观判断岩体不稳定区域和高应力区范围。编制的计算程序在PC机上计算了10万块体单元,用于模拟大型工程,其计算结果与有限元及类似的连续介质模型相比更为合理,为用离散元法进一步研究可变形块体及岩体的蠕变提供了一种切实可行的工具。将离散元法应用于大型工程三维计算是可行的,但在本构模型建立、岩体破坏参数选择等方面均有等于更深入的研究,其结果也有待于更多工程的验证。
Resumo:
In this paper, the glass formation theory is applied to study the formation mechanism of the low leaching glassy slag during the process of plasma waste treatment. The research shows that SiO2 acts as network former to form a 3-dimensional Si-O tetrahedral network in which heavy metals are bonded or encapsulated, so the Si-O tetrahedron protect heavy metals against leaching from the vitrified slag or acid corrosion. For given chemical compositions of waste, the formation ability of the vitrified slag can be represented by the ratio of the whole oxygen ions to the whole network former ions in glass (O/Si) which is appropriate in the range of 2~3. A plasma arc reactor is used to conduct the vitrification experiments of two kinds of fly ashes with additives in which effects of various parameters including arc power, cooling speed, treatment temperature are studied. The chemical compositions of fly ashes are analyzed by X-ray fluorescence (XRF) spectrometry. The experimental results show that both cooling speed and O/Si have important influence on the formation of the vitrified slag, which is qualitatively in accordance with the predictions of the glass formation theory.
Resumo:
Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.
Resumo:
In this study, we examined the microstructure of crystals generated in borate glass by femtosecond laser irradiation (FSLI). The distribution of the high-temperature and low-temperature phases of barium metaborate crystals produced in the borate glass is analyzed using Raman spectroscopy. We then propose the possible mechanism for the generation of crystals in glass by FSLI.
Resumo:
在室温下用聚焦的飞秒激光照射高折射率、低双折射的透明含芴结构树脂-对苯二甲酸乙二醇酯(PET)共聚物,探索飞秒激光制备高分子光学功能微结构的可能性。通过紫外-可见吸收光谱、红外光谱、电子自旋共振谱、光学显微镜、扫描电镜及透射电镜等分析手段,对该材料在飞秒激光照射后的结构变化及机理进行研究。结果发现:含芴结构树脂共聚物在飞秒激光照射后产生化学键断裂,生成未成对电子,并形成无定形碳;照射区在可见光区域的吸收增强;随激光能量密度的减少在激光会聚点附近诱导结构由慧尾状向单一细丝转变。演示了三维着色内雕。
Resumo:
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with direrent growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the lowgrowth rate sample shows a greater blue shift of PL peak wave length. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blue shift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
Resumo:
In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.
Resumo:
Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot. (C) 2004 Elsevier B.V. All rights reserved.