17 resultados para Sulphur mines and mining
Resumo:
Origins of H_2S, thiols, thiophenes in natural gases and sulphur-enriched oils are complicated and thus some debates exist on them. The post-doctoral research is based upon oil- and gas-field data. Cases for study include Triassic Jianglingjiang Formation natural gases, Wolonghe Field, Sichuan Basin, Paleozoic oils and bitumen, Central Tarim, gases reserviored nearby Carboniferious - Ordovician unconformity, Hetianhe Field, Tarim Basin and sulphur-enriched oils in Tertiary reserviors in Jinxian Sag, Bohai Bay Basin. We have carried out analyses on the oils and gases for chemistry, δ~(13)C, δ~(34)S, and molecular composition of biomarkers, analyzed authigenetic pyrite forδ~(34)S, formation water for chemistry and δD and δ~(18)O along with petroleum system and burial history analyses, The aims are to assess the origins of the H2S and authigenetic pyrite, to discuss the possibility of reduced sulphur incorporation into hydrocarbons and to determine the mechanisms of hydrocarbon secondary alteration in the above four cases by comparison. The research shows that the reduced sulphur in the four cases is the result of thermochemical and biological sulphate reduction., TSR and BSR, respectively. No evidence indicates an origin of decomposition of organic matter or mantle - derived H2S in the cases. Elevated H_2S contents (up to 32%) in the Triassic Jialingjiang Formation are considered to result from TSR while relatively low H_2S (up to 2000ppm) in the Hetianhe Field resulted from BSR. However, it is not the case for the Central Tarim where relatively low H2S but abundant authigenetic pyrite occurr. Part of the H_2S in the Central Tarim reservoirs has reacted with iron released from clay minerals to precipitate pyrite. Thus, reduced sulphur δ~(34)S and reservoir temperatures rather than the H2S amount are reliable parameters to distinguish between TSR and BSR. TSR in Sichuan Basin Triassic Jialingjiang Formation and Central Tarim Paleozoic reservoirs are showed to take place at more than 125℃. the H2S and authigenetic pyrite have δ~(34)S close to parent anhydrite. In contrast, BSR in the reservoirs near the Carboniferous - Ordovician unconformity in the Hetianhe Field and in the Tertiary in the Jinxian Sag took place at temperatures less than 80℃with sulphide δ~(34)S as light as -24.9‰ and -12.5‰, anhydrite δ~(34)S as heavy as +26‰and +3 5-+40‰, respectively. Chemistry and isotopic composition of the natural gases change as the result of sulphate reduction. It has been observed that relative composition of light hydrocarbon gases is changed along with a rise in H_2S and CO_2. TSR in the Triassic Jialingjiang Formation and BSR in the Hetianhe Field result in a greater degree of preferential depletion of methane than larger molecular hydrocarbon gases. As TSR or BSR proceeds, hydrocarbon gases evolved to heavier carbon isotope as the result of kinetic isotopic fractionation, i.e., selective anaerobic oxidation of ~(12)C. Using the model of residual methane (Whiticar, 1999) to describe the relationship among the proportion of methane oxidation, isotopic shift and fraction factor, about 30% methane is calculated to have been oxidized during BSR in the western part of the Hetianhe Field. From the above, it can be concluded that in the area where H_2S is abundant, empiricalδ~(13)C -Ro relationships do not work. Sulphate reduction results in a rise in sulphur content, gravity and viscosity of an oil as well as changes in δ~(13)C and δ~(34)S. On special conditions, the reduced sulphur from sulphates might be incorporated into oils, i.e., the increasing sulphur is derived from secondarily reduced sulphur. A positive correlative relationship exists between sulphur content and δ~(34)S in the oils in Paleozoic reservoirs in Central Tarim, indicating that enhanced sulphur is ~(34)S-enriched, originated from TSR. The Jinxian oil with the highest sulphur content has the lightest δ~(34)S, suggesting part of the sulphur in the oil is ~(34)S-depleted, originated from BSR. In the Jinxian oil with increasing sulphur content, asphaltenes shows higher content and more negative δ~(13)C, and saturates shows evidence of biodegradetion and a decreasing content and a positive δ~(13)C shift. Thus, asphaltenes have δ~(13)C values closer to saturates. All the above indicate that the reduced sulphur has been incorporated into biodegradated saturates to generate new asphaltenes with relatively light δ~(13)C of saturates. Thiols and thiophenes in natural gases in the Triassic Jialingjiang Formation may result from reaction of H_2S with hydrocarbon. In the Jialingjiang Formation hydrocarbon gases are dominated by methane thus have a high dryness coefficient and thiols are showed to be positively related to H_2S content, suggesting that the thiols may result from H_2S reaction with short chain hydrocarbons. In contrast, high thiophenes occur in wet gases in Jurassic reservoirs with their source rock from sulphur - depleted type I kerogen, indicating that thiophenes may be a product of reaction of H2S with longer chain hydrocarbons.
Resumo:
Seepage control in karstic rock masses is one of the most important problems in domestic hydroelectric engineering and mining engineering as well as traffic engineering. At present permeability assessment and leakage analysis of multi-layer karstic rock masses are mainly qualitative, while seldom quantitative. Quantitative analyses of the permeability coefficient and seepage amount are conducted in this report, which will provide a theoretical basis for the study of seepage law and seepage control treatment of karstic rocks. Based on the field measurements in the horizontal grouting galleries of seepage control curtains on the left bank of the Shuibuya Hydropower Project on the Qingjiang river, a hydraulic model is established in this report, and the computation results will provide a scientific basis for optimization of grouting curtain engineering. Following issues are addressed in the report. (1) Based on the in-situ measurements of fissures and karstic cavities in grouting galleries, the characteristics of karstic rock mass is analyzed, and a stochastic structural model of karstic rock masses is set up, which will provide the basis for calculation of the permeability and leakage amount of karstic rock mass. (2) According to the distribution of the measured joints in the grouting galleries and the stochastic results obtained from the stochastic structural model of karstic rock mass between grouting galleries, a formula for computation of permeability tensor of fracturing system is set up, and a computation program is made with Visual Basic language. The computation results will be helpful for zoning of fissured rock masses and calculation of seepage amount as well as optimization of seepage control curtains. (3) Fractal theory is used to describe quantitatively the roughness of conduit walls of karstic systems and the sinuosity of karstic conduits. It is proposed that the roughness coefficient of kastic caves can be expressed by both fractal dimension Ds and Dr that represent respectively the extension sinuosity of karstic caves and the roughness of the conduit walls. The existing formula for calculating the seepage amount of karstic conduits is revised and programmed. The seepage amount of rock masses in the measured grouting galleries is estimated under the condition that no seepage control measures are taken before reservoir impoundment, and the results will be helpful for design and construction optimization of seepage curtains of the Shuibuya hydropower project. This report is one part of the subject "Karstic hydrogeology and the structural model and seepage hydraulics of karstic rock masses", a sub-program of "Study on seepage hydraulics of multi-layer karstic rock masses and its application in seepage control curtain engineering", which is financially supported by the Hubei Provincial key science and technology programme.