32 resultados para Stochastic simulation algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present talk, the simulation of vortex dominant and turbulent flows are primarily addressed. To cope with complicated circumstances in environmental flows we illustrate the strategy of combining simplified physical model and suitable algorithm by a few examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a level set method is developed for simulating the motion of a fluid particle rising in non-Newtonian fluids described by generalized Newtonian as well as viscoelastic model fluids. As the shear-thinning model we use a Carreau-Yasuda model, and the viscoelastic effect can be modeled with Oldroyd-B constitutive equations. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The level set method is implemented to compute the motion of a bubble in a Newtonian fluid as one of typical examples for validation, and the computational results are in good agreement with the reported experimental data.The level set method is also applied for simulating a Newtonian drop rising in Carreau-Yasuda and Oldroyd-B fluids.Numerical results including noticeably negative wake behind the drop and viscosity field are obtained, and compare satisfactorily with the known literature data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among different phase unwrapping approaches, the weighted least-squares minimization methods are gaining attention. In these algorithms, weighting coefficient is generated from a quality map. The intrinsic drawbacks of existing quality maps constrain the application of these algorithms. They often fail to handle wrapped phase data contains error sources, such as phase discontinuities, noise and undersampling. In order to deal with those intractable wrapped phase data, a new weighted least-squares phase unwrapping algorithm based on derivative variance correlation map is proposed. In the algorithm, derivative variance correlation map, a novel quality map, can truly reflect wrapped phase quality, ensuring a more reliable unwrapped result. The definition of the derivative variance correlation map and the principle of the proposed algorithm are present in detail. The performance of the new algorithm has been tested by use of a simulated spherical surface wrapped data and an experimental interferometric synthetic aperture radar (IFSAR) wrapped data. Computer simulation and experimental results have verified that the proposed algorithm can work effectively even when a wrapped phase map contains intractable error sources. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photon iterative numerical technique, which chooses the outputs of the amplified spontaneous emission spectrum and lasing mode as iteration variables to solve the rate equations, is proposed and applied to analyse the steady behaviour of conventional semiconductor optical amplifiers (SOAs) and gain-clamped semiconductor optical amplifiers (GCSOAs). Numerical results show that the photon iterative method is a much faster and more efficient algorithm than the conventional approach, which chooses the carrier density distribution of the SOAs as the iterative variable. It is also found that the photon iterative method has almost the same computing efficiency for conventional SOAs and GCSOAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel algorithm for removing facial makeup disturbances as a face detection preprocess based on high dimensional imaginal geometry is proposed. After simulation and practical application experiments, the algorithm is theoretically analyzed. Its apparent effect of removing facial makeup and the advantages of face detection with this pre-process over face detection without it are discussed. Furthermore, in our experiments with color images, the proposed algorithm even gives some surprises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a face detection algorithm which is based on high dimensional space geometry has been proposed. Then after the simulation experiment of Euclidean Distance and the introduced algorithm, it was theoretically analyzed and discussed that the proposed algorithm has apparently advantage over the Euclidean Distance. Furthermore, in our experiments in color images, the proposed algorithm even gives more surprises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved BP algorithm for pattern recognition is proposed in this paper. By a function substitution for error measure, it resolves the inconsistency of BP algorithm for pattern recognition problems, i.e. the quadratic error is not sensitive to whether the training pattern is recognized correctly or not. Trained by this new method, the computer simulation result shows that the convergence speed is increased to treble and performance of the network is better than conventional BP algorithm with momentum and adaptive step size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau theological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (rho(1)/rho(g) up to 10(3)) and high viscosity (eta(1)/eta(g) up to 10(4)). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, as an extension of minimum unsatisfied linear relations problem (MIN ULR), the minimum unsatisfied relations (MIN UR) problem is investigated. A triangle evolution algorithm with archiving and niche techniques is proposed for MIN UR problem. Different with algorithms in literature, it solves MIN problem directly, rather than transforming it into many sub-problems. The proposed algorithm is also applicable for the special case of MIN UR, in which it involves some mandatory relations. Numerical results show that the algorithm is effective for MIN UR problem and it outperforms Sadegh's algorithm in sense of the resulted minimum inconsistency number, even though the test problems are linear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general numerical algorithm in the context of finite element scheme is developed to solve Richards’ equation, in which a mass-conservative, modified head based scheme (MHB) is proposed to approximate the governing equation, and mass-lumping techniques are used to keep the numerical simulation stable. The MHB scheme is compared with the modified Picard iteration scheme (MPI) in a ponding infiltration example. Although the MHB scheme is a little inferior to the MPI scheme in respect of mass balance, it is superior in convergence character and simplicity. Fully implicit, explicit and geometric average conductivity methods are performed and compared, the first one is superior in simulation accuracy and can use large time-step size, but the others are superior in iteration efficiency. The algorithm works well over a wide variety of problems, such as infiltration fronts, steady-state and transient water tables, and transient seepage faces, as demonstrated by its performance against published experimental data. The algorithm is presented in sufficient detail to facilitate its implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the plasma flow and heat transfer characteristics of low-power (kW class) arc-heated thrusters (arcjets) with 2:1 hydrogen/nitrogen to simulate decomposed hydrazine as the propellant. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, the Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. Typical computed results about the temperature, velocity and Mach number distributions within arcjet thruster are presented for the case with arc current of 9 A and inlet stagnant pressure of 3.3×105 Pa to show the flow and heat transfer characteristics. It is found that the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip, and the flow transition from the subsonic to supersonic regime occurs within the constrictor region. The effect of gas viscosity on the plasma flow within arcjet thruster is examined by an additional numerical test using artificially reduced values of gas viscosity. The test results show that the gas viscosity appreciably affects the plasma flow and the performance of the arcjet thruster for the cases with the hydrazine or hydrogen as the propellant. The integrated axial Lorentz force in the thruster nozzle is also calculated and compared with the thrust force of the arcjet thruster. It is found that the integrated axial Lorentz force is much smaller than the thrust force for the low-power arcjet thruster. Modeling results for the NASA 1-kW class arcjet thruster with simulated hydrazine as the propellant are found to be reasonably consistent with available experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on several facts of CSRrn, such as the layout of the ring, the lattice parameters, exiting Schottky noise diagnosis equipment and fund, the primary stochastic cooling design of CSRm has been carried out. The optimum cooling time and the optimum cooling bandwidth axe obtained through simulation using the cooling function. The results indicate that the stochastic cooling is quite a powerful cooling method for CSRm. The comparison of the cooling effects of stochastic cooling and electron cooling in CSR are also presented. We can conclude that the combination of the two cooling methods on CSRrn will improve the beam cooling rate and quality beam greatly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collision detection is an important component in simulation applications which are based on virtual geographic information system (VGIS). In this paper, an effective collision detection algorithm for multiple objects in VGIS, VGIS-COLLIDE, is presented. The algorithm firstly integrates existing quadtree, which is the global hierarchical structure of VGIS, with axis-aligned bounding box of object to perform the broad-phase of collision detection. After that, exact collision detection between two objects which have passed the broad-phase of collision detection is performed. The algorithm makes no assumption about input primitives or object's motion and is directly applicable to all triangulated models. It can be applicable to both rigid and deformable objects without preprocessing. The performance of the algorithm has been demonstrated in several environments consisting of a high number of objects with hundreds of thousands of triangles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactive extrusion for polymerization is an integrated polymer processing technology. A new semi-implicit iterative algorithm was proposed to deal with the complicated relationships among the chemical reaction, the macromolecular structure and the chemorheological property. Then the numerical computation expressions of the average molecular weight, the monomer conversion, and the initiator concentration were deduced, and the computer simulation of the reactive extrusion process for free radical polymerization was carried out, on basis of which reactive processing conditions can be optimized.