28 resultados para Spore trap
Resumo:
The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes No252-254 were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a Ca-48 beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.
Resumo:
A Penning trap system called Lanzhou Penning Trap (LPT) is now being developed for precise mass measurements at the Institute of Modern Physics (IMP). One of the key components is a 7 T actively shielded superconducting magnet with a clear warm bore of 156 mm. The required field homogeneity is 3 x 10(-7) over two 1 cubic centimeter volumes lying 220 mm apart along the magnet axis. We introduce a two-step method which combines linear programming and a nonlinear optimization algorithm for designing the multi-section superconducting magnet. This method is fast and flexible for handling arbitrary shaped homogeneous volumes and coils. With the help of this method an optimal design for the LPT superconducting magnet has been obtained.
Resumo:
A penning trap system called LPT (LANZHOU PENNING TRAP) is now being developed for precise mass measurements in IMP (Institute of Modern Physics). The most key component of LPT is a superconducting magnet. A Phi 156 mm warm bore and two cylinder good field regions with a distance of 220 mm are required for trapping ions and measurements. As the required homogeneity is better than 0.5 ppm, several complicated coaxial coils are used to produce such a magnetic field. The size and position of these coils are optimized by using a method combining linear program with multiobjective optimization. Superconducting shim coils and passive shim pieces are used to eliminate inevitable winding tolerances and environmental influence. The fringe field is decreased to 5 Gs at 2 m line from the center of the magnet by active shielding coils. The designs of the mechanical structure, the quench protection system are also introduced in this paper.
Resumo:
Since protein phosphorylation is a dominant mechanism of information transfer in cells, there is a great need for methods capable of accurately elucidating sites of phosphorylation. In recent years mass spectrometry has become an increasingly viable alternative to more traditional methods of phosphorylation analysis. The present study used immobilized metal affinity chromatography (IMAC coupled with a linear ion trap mass spectrometer to analyze phosphorylated proteins in mouse liver. A total of 26 peptide sequences defining 26 sites of phosphorylation were determined. Although this number of identified phosphoproteins is not large, the approach is still of interest because a series of conservative criteria were adopted in data analysis. We note that, although the binding of non-phosphorylated peptides to the IMAC column was apparent, the improvements in high-speed scanning and quality of MS/MS spectra provided by the linear ion trap contributed to the phosphoprotein identification. Further analysis demonstrated that MS/MS/MS analysis was necessary to exclude the false-positive matches resulting from the MS/MS experiments, especially for multiphosphorylated peptides. The use of the linear ion trap considerably enabled exploitation of nanoflow-HPLC/MS/MS, and in addition MS/MS/MS has great potential in phosphoproteome research of relatively complex samples. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
A method for calibration of an audio-frequency (AF) ion trap mass spectrometer is described. The method is proposed to surmount the obstacle that there is a lack of a proper calibrant for mass spectrometers in the mass-to-charge ratio (m/z) range of 10(6) to 10(10). To calibrate such mass spectra, we determine the point of ejection, q(eject), on the stability diagram of the ion trap operated in a mass-selective axial instability mode. This is accomplished by measuring the radial secular frequencies (and therefore, the m/z value) of a single trapped particle using a light scattering method, followed by monitoring the action of particle ejection in real time to obtain the q(eject). A delayed ejection with q(eject) = 0.949 +/- 0.004 is found at a trap driving frequency of Ohm/2pi = 200-600Hz. Theoretical analysis for the origin of the delayed ejection indicates that the delay is predominantly resulted from the existence of multipole components in the fields due to trap imperfections. Inclusion of -3% of the octopole with respect to the basic quadrupole field can satisfactorily account for our observations. An m/z accuracy approaching 0.1% is attainable after proper calibration of the AF ion trap mass spectrometer. (Int J Mass Spectrom 214 (2002) 63-73) (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified.
Resumo:
Incubated solutions containing glutathione (GSH) and alpha- or beta-cyclodextrins (CDs) were analyzed using electrospray mass spectrometry and tandem mass spectrometry, The results suggest that both CDs can catalyze oxidation of GSH to the oxidized glutathione (GSSG). The collision-induced dissociation (CID) of the 1:1 and 1:2 (CD/GSH) and 1:1 (CD/GSSG) complexes reveals the strong interactions of the CDs with the peptides tested. The 1:2 (CD/GSH) complex is considered to be the oxidation reaction intermediate, which indicates that the three-dimensional structure of the complexed two GSHs in CD complexes Is different from that of the proton-bound GSH dimer, The oxidation product, GSSG, Is also observed in the CID spectrum of the singly charged 1:1 (CD/GSH) complex, suggesting that a complex ion-complex ion reaction occurs by forming a doubly charged complex dimer, as a result of the ability of ion trap to accumulate and activate ions. The observations indicate that ion trap mass spectrometry can be used to explore cyclodextrin-catalyzed reactions and to carry out complex gaseous chemistry research. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Two methods for tetrodotoxin analysis using liquid chromatography coupled with electrospray iontrap mass spectrometry (LC-ESI-MS) have been established with C,, reversed phase column and hydrophilic interaction liquid chromatography (HILIC) column, respectively. Sensitivity and reproducibility of the methods were compared. The method using C-18 column in selected ion monitoring (SIM) mode had a detection limit (S/N = 3) of 120 pg, and a good linearity of the calibration curve was obtained for tetrodotoxin (r = 0. 9992). High reproducibility of the method was observed, with a relative standard deviation (RSD) below 10%. The method using HILIC column in SIM mode and selected reaction monitoring (SRM) mode had detection limits (S/N = 3) of 15 and 3.75 pg, respectively. Good linearity of the calibration curves was obtained for tetrodotoxin (r = 0. 9996 and 0. 9998 in SIM and SRM mode, respectively). T he reproducibility was high in SIM mode but relatively poor in SRM mode. Based on the results, the method using HILIC column in SIM mode was suggested for the analysis of tetrodotoxin with LC-MS system.
Resumo:
A resurgence of interest in the human plasma proteome has occurred in recent years because it holds great promise of revolution in disease diagnosis and therapeutic monitoring. As one of the most powerful separation techniques, multidimensional liquid chromatography has attracted extensive attention, but most published works have focused on the fractionation of tryptic peptides. In this study, proteins from human plasma were prefractionated by online sequential strong cation exchange chromatography and reversed-phase chromatography. The resulting 30 samples were individually digested by trypsin, and analyzed by capillary reversed-phase liquid chromatography coupled with linear ion trap mass spectrometry. After meeting stringent criteria, a total of 1292 distinct proteins were successfully identified in our work, among which, some proteins known to be present in serum in < 10 ng/mL were detected. Compared with other works in published literatures, this analysis offered a more full-scale list of the plasma proteome. Considering our strategy allows high throughput of protein identification in serum, the prefractionation of proteins before MS analysis is a simple and effective method to facilitate human plasma proteome research.
Resumo:
Direct-injection electrospray ionization mass spectrometry in combination with information-dependent data acquisition (IDA), using a triple-quadrupole/linear ion trap combination, allows high-throughput qualitative analysis of complex phospholipid species from child whole blood. In the IDA experiments, scans to detect specific head groups (precursor ion or neutral loss scans) were used as survey scans to detect phospholipid classes. An enhanced resolution scan was then used to confirm the mass assignments, and the enhanced product ion scan was implemented as a dependent scan to determine the composition of each phospholipid class. These survey and dependent scans were performed sequentially and repeated for the entire duration of analysis, thus providing the maximum information from a single injection. In this way, 50 different phospholipids belonging to the phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylcholine and sphingomyelin classes were identified in child whole blood. Copyright (C) 2005 John Wiley & Sons, Ltd.