36 resultados para Spencer, Oliver Hawes
Resumo:
目前国际上占主导地位的纳米压痕技术是由Oliver与Pharr提出并发展,目前的纳米压痕可以给出整个加、卸载过程的载荷—位移曲线以及硬度与弹性模量随压痕深度变化的曲线,从而提供了丰富的、比较精确的信息,为利用它探索材料比较完整的力学特性提供了可能.为达到该目的,就必须对压痕实验的加、卸过程进行较为深入的研究.作为主要的研究工具,有限元方法模拟微压痕过程在探讨通过实验数据得到更多、更准确的材料表层力学性能参数以及解释实验现象等方面发挥着重要作用.基于计算机速度与容量的原因,较早进行微压痕过程有限元模拟的BhattacharyaandNix、LaursenandSino都使用圆锥压头模拟维氏显微硬度标准正四棱锥Vicker压头与纳米压痕仪标准正三棱锥Berkovich压头,因为圆锥压头具有旋转对称性,可用二维旋转对称单元(二维实体单元)进行计算从而降低计算规模.即便如此,以当时大型计算机的水平,对规模为400~2000个四节点矩形单元的有限元模型进行一次完整的加、卸载过程也需要1~2天.到目前为止,微尺度压痕实验的数值模拟沿用二维模型.事实上,由于加工工艺的限制,微尺度压痕仪的压头如Berkovich与Vicker压头均不个旋转对称性;就微观尺度而言,实际的表层材料都是非均匀的.这些特征均不能由二维模拟体现,所以该文首先建立三维有限元模型,模拟带滑动接触的微尺度压痕加、卸载过程.在此基础上重点讨论了压头几何效应的问题,如二维模拟与三维模拟的关系、显微硬度与纳米的压痕硬度的关系、不同压头下材料的应力应变场、压痕间距与压痕边界的效应等,最后针对微尺度压痕实验中出现的压痕硬度随压痕深度减小而升高的现象,讨论了影响不同压痕深度硬度值的因素.
Resumo:
本论文对沿阶草族Ophiopogoneae(Endl.)Kunth的研究历史作了回顾,从染色体、形态学和解剖学角度对此族作了研究,并作了数值分类和分支 系统学分析的尝试,在此基础上探讨了这个族的系统学问题. 1)本论文对此族三属37种123居群的染色体数目、基数及核型不对称性作了研究,其中19种的染色体为首次报道.它们是:P.macrostegiaHance, P.yunnanensis Wang et Tang,P.ophiopogonoides Wang et Tang,O. sarmentosus Wang et Dai,O.tienensis Wang et Tang, O.sylvicola Wang et Tang, O.fooningensis Wang et Dai, O.mairei L6vl.,O.szechuanensis Wang et Tang, O.angustiatus (Wang et Tang) S.C.Chen, O.amblyphyllus Wang et Dai,O.clavatus Wright ex Oliver,O.clivioidesD.M.Zhang et Hong, O.longiscaposus D.M.Zhang et Hong,O.umbraticola Hance,O.fuiD.M.Zhang ntHong,O.zingiberaceus Wang et Dai,O.gangxiensisd.M.Zhang et Hong,O. lo fouense L6vl. 2)在此族中首次报道了2n = 2x = 34的异基数二倍体,同时在O.umbraticola,O.japonicus,O.cLarkei中报道了2n=68的异基数二倍体,过核型和减数分裂等证明异基数是在二倍体水平上形成,并发展成倍性系列的. 3)在此族中首次报道了B染色体的存在,已确证了两种(P.macrostegia和D.tienensis).一种尚需进一步确证(O.Larkei). 4)通过对随体位置的系统研究,发现在此族中随体位置具有分类价值. 5)通过对8个种内多倍体、4个多倍体种的研究,表明多倍体分布于较北、海拔较高的地方,而亚洲热带地区的种,则无多倍体,同时在具异基数种类和核型较不对称种类上亦有这种分布特征;在确定了分布的多度中心的基础上,提出喜马拉雅_横断山脉到川西、川南一带是沿阶草属和山麦冬属的近代分化中心. 6)通过染色体结构和数目几个角度的研究,表明球子草属与其他两属在。染色体水平上已发生很大分化,但其属内的分化则不表现在染色体上.其他二属内部则有基数、倍性和核型不对称方面的分化.综观此族,染色体具有由核 型对称向不对称、由二倍体向多倍体、由种内多倍体向多倍体种,由单一基数向种内异基数几个方向进化的趋势. 7)通过对此族的形态观察和分析,提出茎或根状茎分枝方式是属下分类的重要依据;认为本族植物的花序是由圆锥花序简化而来,但残留着圆锥花序特征;并提出了本族花、茎、叶、根几个方面的形态演化趋势. 8)通过对此族二属21种的子房解剖,发现三属均有半下位子房,因而认为子房半下位作为分属检索性状是不合适的.此外还观察到子房着生位置在种内亦有变异,对这种变异的意义进行了探讨. 9)通过此族三属46种2变种的数值分类处理,表明本族由球子草群和沿阶草一山麦冬群两大类群组成,山麦冬属仅是与沿阶草属一个组(葶花组)并列的分类单元,其内部分化较小,而沿阶草属则较大. 10)通过46个性状计算了山麦冬属和沿阶草属共6个广布的“群内总体相 似度”(IOS),表明山麦冬属3个种种内个体之间、种间个体之间的分化很小,且可能有杂交现象,结合染色体资料和分布特征,认为这个属的发生是个相当晚近的事件. 11)本文从形态和染色体角度,认为沿阶草族是一个自然类群;由分支系 统学分析表明,此族由二个单系类群(球子草属和沿阶草属)组成,沿阶草属含两个单系的组,其中各含3个系,山麦冬属为其中一个系.这一结果与数值 分类结果和染色体资料相符. 12)为避免单一分类方法可能导致的不合理结果,本文以自拟的一种综合分类方法,把谱系、进化、分化诸因素均予考虑,得出一个三维图象,以图象 上相对等径的球作为分类依据,得出的结果与分支系统学和数值分类结果基本一致.因此,山麦冬属作为与沿阶草属等阶的分类地位,应予重新考虑. 13)本文最后对这个族的全面修订提出几点建议. 14)此外,本文还描述了沿阶草属4个新种.
Resumo:
有关人猿超科的系统发育仍然存在争议。争论焦点在人与大猩猩和黑猩猩哪个关系更近一点。酪氨酸酶是黑色素合成中的关键酶,酪氨酸酶基因的突变将导致白化病。测定了人猿超科中大猩猩、黑猩猩、猩猩和长臂猿酪氨酸酶基因全部5个外显子的DNA序列。结合已发表人的序列,用简约法构建了基因树。结果表明,人与大猩猩的关系比黑猩猩要近一些。
Resumo:
Endogenous retroviruses ( ERVs) are remnants of ancient retroviral infections of the host germline transmitted vertically from generation to generation. It is hypothesized that some ERVs are used by the host as restriction factors to block the infection o
Resumo:
The human genome project has been recently complemented by whole-genome assessment sequence of 32 mammals and 24 nonmammalian vertebrate species suitable for comparative genomic analyses. Here we anticipate a precipitous drop in costs and increase in sequ
Resumo:
Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.
Resumo:
Recurrence is a key characteristic in the development of epilepsy. It remains unclear whether seizure recurrence is sensitive to postseizure stress. Here, tonic-clonic seizures were induced with a convulsive dose of pentylenetetrazole (PTZ), and acute seizure recurrence was evoked with a subconvulsive dose of the drug. We found that stress inhibited seizure recurrence when applied 30 minutes or 2 hours, but not 4 hours, after the tonic-clonic seizure. The time-dependent anti-recurrence effect of stress was mimicked by the stress hormone corticosterone and blocked by co-administration of mineralocorticoid and glucocorticoid receptor antagonists. Furthermore, in a PTZ-induced epileptic kindling model, corticosterone administered 30 minutes after each seizure decreased the extent of seizures both during the kindling establishment and in the following challenge test. These results provide novel insights into both the mechanisms of and therapeutic strategies for epilepsy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
The three-dimensional morphology of In(Ga)As nanostructures embedded in a GaAs matrix is investigated by combining atomic force microscopy and removal of the GaAs cap layer by selective wet etching. This method is used to investigate how the morphology of In(Ga)As quantum dots changes upon GaAs capping and subsequent in situ etching with AsBr3. A wave function calculation based on the experimentally determined morphologies suggests that quantum dots transform into quantum rings during in situ etching. (c) 2007 American Institute of Physics.
Resumo:
Tunable biaxial stresses, both tensile and compressive, are applied to a single layer graphene by utilizing piezoelectric actuators. The Gruneisen parameters for the phonons responsible for the D, G, 2D and 2D' peaks are studied. The results show that the D peak is composed of two peaks, unambiguously revealing that the 2D peak frequency (omega(2D)) is not exactly twice that of the D peak (omega(D)). This finding is confirmed by varying the biaxial strain of the graphene, from which we observe that the shift of omega(2D)/2 and omega(D) are different. The employed technique allows a detailed study of the interplay between the graphene geometrical structures and its electronic properties.
Resumo:
A three-spring-in-series model is proposed for the nanobelt (NB) indentation test. Compared with the previous two-spring-in-series model, which considers the bending stiffness of atomic force microscope cantilever and the indenter/NB contact stiffness, this model adds a third spring of the NB/substrate contact stiffness. NB is highly flexural due to its large aspect ratio of length to thickness. The bending and lift-off of NB form a localized contact with substrate, which makes the Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)] and Sneddon method [I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)] inappropriate for NB indentation test. Because the NB/substrate deformation may have significant impact on the force-indentation depth data obtained in experiment, the two-spring-in-series model can lead to erroneous predictions on the NB mechanical properties. NB in indentation test can be susceptible to the adhesion influence because of its large surface area to volume ratio. NB/substrate contact and adhesion can have direct and significant impact on the interpretation of experimental data. Through the three-spring-in-series model, the influence of NB/substrate contact and adhesion is analyzed and methods of reducing such influence are also suggested. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432748]
Resumo:
Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.
Resumo:
Diatomic halogen molecules diffusing into the marine atmosphere are photodissociated to atoms in daylight more rapidly than they undergo other fates. The geochemistry of ‘gaseous halogens’ is considered in terms of photolysis rates and the secondary reactions of the atoms produced. Diatomic halogens could be photolyzed predominantly by day and adsorbed on aerosol by night without yielding diurnal variations in currently measurable variables. Halogen atoms in the marine atmosphere react with ozone more rapidly than with other marine tropospheric constituents, this reaction yielding haloxy radicals that are also reactive.
Resumo:
Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.
Resumo:
Nanometer-scale elastic moduli and yield strengths of polycarbonate (PC) and polystyrene (PS) thin films were measured with atomic force microscopy (AFM) indentation measurements. By analysis of the AFM indentation force curves with the method by Oliver and Pharr, Young's moduli of PC and PS thin films could be obtained as 2.2 +/- 0.1 and 2.6 +/- 0.1 GPa, respectively, which agree well with the literature values. By fitting Johnson's conical spherical cavity model to the measured plastic zone sizes, we obtained yield strengths of 141.2 MPa for PC thin films and 178.7 MPa for PS thin films, which are similar to2 times the values expected from the literature. We propose that it is due to the AFM indentation being asymmetric, which was not accounted for in Johnson's model. A correction factor, epsilon, of similar to0.72 was introduced to rescale the plastic zone size, whereupon good agreement between theory and experiment was achieved.