91 resultados para Solid state 13C CPMAS NMR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal and hydrothermal stabilities of HZSM-5 zeolites with crystal sizes less than 100 nm have been studied by multinuclear solid-state NMR, combined with BET and XRD. As evidenced by Al-27 and Si-29 MAS as well as their corresponding cross-polarization/MAS NMR investigations, the thermal stability of nanosized HZSM-5 is not so good as that of microsized HZSM-5. This is due to two processes concerning dealumination and desilicification involved in the calcination of nanosized HZSM-5, while only the dealumination process is conducted in microsized HZSM-5 under the similar calcination process. The hydrothermal stability of nanosized HZSM-5 is, contrary to what was expected, not so bad as that of the microsized HZSM-5 in the course of steam treatment. The actual resistance of the hydrothermal stability to the crystal size of HZSM-5 can be ascribed to an active reconstruction of zeolitic framework through an effective filling of amorphous Si species into nanosized HZSM-5 during hydrothermal treatment. (C) 2001 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on birefringence, a building-block stacking technique is suggested in this paper. A solid-state optical morphological processor module is thus developed, which is an integration of a beam array generator submodule, an optical connector submodule, and a Pockels readout optical modulator. It is shown that the technique is compact in construction, simple for fabrication, and insensitive to the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported. It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal. The Q-switching voltage is triggered by the peak of the pre-lasing pulse to achieve the higher stability of output pulse energy. The output energy of more than 1 mJ is obtained with output energy stability of 3% (rms) at 100 Hz. The pulse-width can be adjusted from 30 ns to 300 ns by changing the Q-switching voltage. The probability of putting out single-longitudinal-mode pulses is almost 100%. The laser can be run over four hours continually without mode hopping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on graphic analysis design method of optical resonator, a simple design expression of V-folded cavity of end-pumped solid-state lasers with TEM00 operation is described, which satisfies two criterias of the resonator design. We give numerical simulation of spot size as a function of thermal focal length using this design approach whose advantages are validated experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A kilowatt diode-pumped solid state heat capacity laser is fabricated with a double-slab Nd:YAG. Using the theoretical model of heat capacity laser output laser characteristics, the relationships between the output power, temperature and time are obtained. The slab is 59 x 40 4.5mm(3) in size. The average pump power is 11.2kW, the repetition rate is 1kHz, and the duty cycle 20%. During the running time of 1s, the output energy of the laser has a fluctuation with the maximal output energy at 2.06J, and the maximal output average power is 2.06kW. At the end of the second, the output energy declines to about 50% compared to the beginning. The thermal effects can be improved with one slab cooled by water. The experimental results are consistent with calculation data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel laser resonator for compensating depolarization loss that is due to thermally induced birefringence in active rod is reported. As this new structure being applied to an electro-optic Q-switched LIDA side-pumped Nd:YAG laser operating at a repetition rate of 1000 Hz, substantial reduction in depolarization loss has been observed, the output pulse energy is improved about 56% from that of a traditional resonator without compensation structure. With incident pump energy of 450 mJ per pulse, linearly polarized output energy of 30 mJ per pulse is achieved, the pulse duration is less than 15 ns, and the peak power of pulse is about 2 MW. The extinction ratio of laser beam is better than 10:1, and the beam divergence is 1.3 mrad with beam diameter of around 2.5 mm. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, the ZnO quantum dots-SiO2 (Z-S) nanocomposite particles were first synthesized. Transparent Z-S/epoxy super-nanocomposites were then prepared by introducing calcined Z-S nanocomposite particles with a proper ratio of ZnO to SiO2 into a transparent epoxy matrix in terms of the filler-matrix refractive index matching principle. It was shown that the epoxy super-nanocomposites displayed intense luminescence with broad emission spectra. Moreover, the epoxy super-nanocomposites showed the interesting afterglow phenomenon with a long phosphorescence lifetime that was not observed for ZnO-QDs/epoxy nanocomposites. Finally, the transparent and light-emitting Z-S/epoxy super-nanocomposites were successfully employed as encapsulating materials for synthesis of highly bright LED lamps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum measurement will inevitably cause backaction on the measured system, resulting in the well-known dephasing and relaxation. In this paper, in the context of solid-state qubit measurement by a mesoscopic detector, we show that an alternative backaction known as renormalization is important under some circumstances. This effect is largely overlooked in the theory of quantum measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum physics and an essential issue in quantum computing. In this work, by employing a unified quantum master equation approach constructed in our recent publications, we study the measurement-induced relaxation and dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. As a result, our theory is applicable to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit relaxation and dephasing are carried out, and important features are highlighted in concern with their possible relevance to future experiments.