21 resultados para Solar power generation
Resumo:
介绍了生物质气化与废弃物焚烧联合发电技术项目,确定了该项目经济效益的评价指标,定量计算了项目的投资回收期、净现值和内部收益率。同时还对燃料费用、上网电价和固定资产变化引起的敏感性进行分析。结果表明,该联合发电技术的动态投资回收期为9.05a,净现值为2770万元,内部收益率为15.82%,三个经济指标均符合行业标准。从经济角度看是完全可行的。
The item of the biomass gasification and waste incineration combined power was briefly introduced in the paper. The eyaluation index for the economic benefit of this combined power technology was confirmed. The pay back period, net present value and internal rate of return were quantitatively calculated. In addition, sensitivity of evaluation index arose by fuel cost, distribution electricity price and fixed assets was analyzed. The result point out that from the view of economy this combined power technology is feasible because its evaluation index accord with standard of electric industry.
Design and Operation of A 5.5 MWe Biomass Integrated Gasification Combined Cycle Demonstration Plant
Resumo:
The design and operation of a 5.5 MWe biomass integrated gasification combined cycle (IGCC) demonstration plant, which is located in Xinghua, Jiangsu Province of China, are introduced. It is the largest complete biomass gasification power plant that uses rice husk and other agricultural wastes as fuel in Asia. It mainly consists of a 20 MWt atmospheric circulating fluidized-bed gasifier, a gas-purifying system, 10 sets of 450 kW(e) gas engines, a waste heat boiler, a 1.5 MWe steam turbine, a wastewater treatment system, etc. The demonstration plant has been operating since the end of 2005, and its overall efficiency reaches 26-28%. Its capital cost is less than 1200 USD/kW, and its running cost is about 0.079 USD/kWh based on the biomass price of 35.7 USD/ton. There is a 20% increment on capital cost and 35% decrease on the fuel consumption compared to that of a 1 MW system without a combined cycle. Because only part of the project has been performed, many of the tests still remain and, accordingly, must be reported at a later opportunity.
Resumo:
An electrical-to-green efficiency of more than 10% was demonstrated by intracavity-frequency-doubling a Q-switched diode-side-pumped Nd:YAG laser with a type II lithium triborate (LBO) crystal in a straight plano-concave cavity. An average power of 69.2 W at 532 nm was generated when electrical input power was 666 W. The corresponding electrical-to-green conversion efficiency is 10.4%. To the best of our knowledge, this is the highest electrical-to-green efficiency of second harmonic generation laser systems with side-pumped laser modules, ever reported. At about 66 W of green output power, the power fluctuation over 4 hours was better than +/-0.86%.
Resumo:
能源替代形式的迫切性和环境保护的严峻性使得太阳能光伏发电技术倍受瞩目。本文针对目前光伏发电技术的现状进行了详尽的介绍与分析,同时结合全球太阳能资源分布、光伏材料资源的分布及政府的扶持政策对其发展前景进行了展望。最后对光伏发电技术在提供大电力的同时对我们赖以生存的环境资源保护予以肯定。
Resumo:
Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the proposed system is a V-shaped structure with two polycrystalline solar cells. Compared to solar cells in a conventional approach, the V-shaped structure enhances external quantum efficiency and leads to an increase of 24% in power conversion efficiency.