168 resultados para Simulation-Numerical
Resumo:
A comprehensive model of laser propagation in the atmosphere with a complete adaptive optics (AO) system for phase compensation is presented, and a corresponding computer program is compiled. A direct wave-front gradient control method is used to reconstruct the wave-front phase. With the long-exposure Strehl ratio as the evaluation parameter, a numerical simulation of an AO system in a stationary state with the atmospheric propagation of a laser beam was conducted. It was found that for certain conditions the phase screen that describes turbulence in the atmosphere might not be isotropic. Numerical experiments show that the computational results in imaging of lenses by means of the fast Fourier transform (FFT) method agree well with those computed by means of an integration method. However, the computer time required for the FFT method is 1 order of magnitude less than that of the integration method. Phase tailoring of the calculated phase is presented as a means to solve the problem that variance of the calculated residual phase does not correspond to the correction effectiveness of an AO system. It is found for the first time to our knowledge that for a constant delay time of an AO system, when the lateral wind speed exceeds a threshold, the compensation effectiveness of an AO system is better than that of complete phase conjugation. This finding indicates that the better compensation capability of an AO system does not mean better correction effectiveness. (C) 2000 Optical Society of America.
Resumo:
A lower-upper symmetric Gauss-Seidel (LU-SGS) subiteration scheme is constructed for time-marching of the fluid equations. The Harten-Lax-van Leer-Einfeldt-Wada (HLLEW) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and transfinite interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then, the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted.
Resumo:
The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach number Mc = 0.8 and Re = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of Lambda-vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.
Resumo:
以激光熔凝表面强韧化处理为背景,应用空间弹塑性有限单元和高精度数值算法同时考虑材料组织性能的变化模拟工件的温度场及残余应力,研究激光熔凝加工中瞬时温度场及残余应力数值模拟,同时考虑相变潜热及相变塑性的影响,用算例验证了模型的正确性,给出了不同时刻温度场分布及残余应力分布。
Resumo:
采用高精度的ENO格式和基于基元化学反应的真实化学反应模型求解氢氧混合气体一维爆轰波的精细结构。采用直接起爆方法得到稳定传播的爆轰波,计算的爆轰波阵面参数和实验相当符合。对爆轰波反应区化学反应的研究表明,参与反应的不同组分具有不同类型的变化特征。网格尺寸影响的研究表明,计算结果的精度随着网格尺寸的增加而增加,并能保持较好的收敛性。移动网格研究结果表明,网格运动速度和爆轰速度接近时,两者的相互作用对计算结果产生一定影响。
Resumo:
The passive scalars in the decaying compressible turbulence with the initial Reynolds number (defined by Taylor scale and RMS velocity) Re=72, the initial turbulent Mach numbers (defined by RMS velocity and mean sound speed) Mt=0.2-0.9, and the Schmidt numbers of passive scalar Sc=2-10 are numerically simulated by using a 7th order upwind difference scheme and 8th order group velocity control scheme. The computed results are validated with different numerical methods and different mesh sizes. The Batchelor scaling with k(-1) range is found in scalar spectra. The passive scalar spectra decay faster with the increasing turbulent Mach number. The extended self-similarity (ESS) is found in the passive scalar of compressible turbulence.
Resumo:
Standing soliton was studied by numerical simulation of ifs governing equation, a cubic Schrodiger equation with a complex conjugate term, which was derived by Miles and was accepted. The value of linear damping in Miles equation was studied. Calculations showed that linear damping effects strongly on the formation of a standing soliton and Laedke and Spatschek stable condition is only a necessary condition, but not a sufficient one. The interaction of two standing solitons was simulated. Simulations showed that the interaction pattern depends on system parameters. Calculations for the different initial condition and its development indicated that a stable standing soliton can be fanned only for proper initial disturbance, otherwise the disturbance will disappear or develop into several solitons.
Resumo:
The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.
Resumo:
The magnetic fields produced by electrical coils are designed for damping the the thermocapillary convection in a floating half-zone in microgravity. The fields are designed specially to reduce the flow near the free surface and then in the melt zone by adjusting the longitudinal coil positions close to the melt zone. The effects of the designed magnetic fields on reducing the flow velocity and temperature distribution non-uniformity in the melt zone are stronger than those of the case of an uniform longitudinal magnetic field obtained by numerical simulation, particularly at the melt-rod interface. It brings fundamental insights into the heat and mass transfer control at the solidification interface by the magnetic field design for crystal growth by the floating full-zone method.
Resumo:
应用有限元方法对层流等离子体射流不锈钢表面重熔工艺中的瞬态热物理现象进行了数值模拟研究.针对不同加热距离,确定了材料熔化和凝固过程中的瞬态温度场、温度梯度和凝固率的时间和空间分布特征.通过引入等效温度面积密度概念,研究了不锈钢重熔热处理的适合条件.结果表明,9~13mm的范围是较为适宜的加热距离,该结果与试验观察基本符合.
Resumo:
On the basis of the lattice model of MORA and PLACE, Discrete Element Method, and Molecular Dynamics approach, another kind of numerical model is developed. The model consists of a 2-D set of particles linked by three kinds of interactions and arranged into triangular lattice. After the fracture criterion and rules of changes between linking states are given, the particle positions, velocities and accelerations at every time step are calculated using a finite-difference scheme, and the configuration of particles can be gained step by step. Using this model, realistic fracture simulations of brittle solid (especially under pressure) and simulation of earthquake dynamics are made.
Resumo:
The gathering systems of crude oil are greatly endangered by the fine sand and soil in oil. Up to now , how to separate sand from the viscid oil is still a technical problem for oil production home or abroad. Recently , Institute of Mechanics in Chinese Academy of Sciences has developed a new type of oil-sand separator , which has been applied successfully in oil field in situ. In this paper, the numerical method of vortex-stream function is used to predict the liquid-solid separating course and the efficiency for this oil-sand separator. Results show that the viscosity and particle diameter have much influence on the particle motion. The calculating separating efficiency is compared with that of experiment and indicates that this method can be used to model the complex two-phase flow in the separator.
Resumo:
Direct numerical simulations of a spatially evolving supersonic flat-plate turbulent boundary layer flow with free Mach number M = 2.25 and Reynolds number Re = 365000/in are performed. The transition process from laminar to turbulent flow is obtained by solving the three-dimensional compressible Navier-Stokes, equations, using high-order accurate difference schemes. The obtained statistical results agree well with the experimental and theoretical data. From the numerical results it can be seen that the transition process under the considered conditions is the process which skips the Tolimien-Schlichting instability and the second instability through the instability of high gradient shear layer and becomes of laminar flow breakdown. This means that the transition process is a bypass-type transition process. The spanwise asymmetry of the disturbance locally upstream imposed is important to induce the bypass-type transition. Furthermore, with increasing the time disturbance frequency the transition will delay. When the time disturbance frequency is large enough, the transition will disappear.
Resumo:
This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists. Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.
Resumo:
以激光熔凝表面强韧化处理为背景,应用空间的弹塑性有限单元和高精度的数值算法、同时考虑材料组织性能的变化来模拟材料的温度场。主要研究激光熔凝加工中瞬时温度场数值模拟,同时考虑相变潜热的影响,为第二步热应力场及残余应力的数值模拟做准备。最后用算例验证了模型的正确性,并给出了不同时刻温度场的分布。