219 resultados para Silica nanoparticles
Resumo:
A new surface modification method by grafting L-lactic acid oligomer onto the surface silanol groups of silica nanoparticles has been developed. The surface-grafting reaction is confirmed by IR and Si-29 MAS NMR analyses. TEM and SEM results show that grafted SiO2 (g-SiO2) nanoparticles can be comparatively uniformly dispersed in chloroform or PLLA matrix, while the unmodified SiO2 nanoparticles tend to aggregate. The loading of g-SiO2 nanoparticles in poly(L-lactide) (PLLA) matrix greatly improves the toughness and tensile strength of this material. In contrast, the incorporation of un-grafted SiO2 nanoparticles into PLLA leads to the deterioration of its mechanical properties. DSC analysis shows that g-SiO2 nanoparticles can serve as a nucleating agent for the crystallization of PLLA in the composites. SEM characterization shows the tough characteristics and great interfacial combination strength for g-SiO2 (5wt%)/PLLA nanocomposites.
Resumo:
SiO2/polyacrylamide (PAM) composite was prepared via the polymerization of acrylamide in the presence of silica sol in water/hexane emulsion, and pure SiO2 was also prepared without the use of acrylamide in the same way. Field emission scanning electron micrographs (FESEM) showed that PAM covered the silica nanoparticles to form SiO2/PAM nanospheres, which loosely agglomerated to form SiO2/PAM secondary particles, while SiO2 secondary particles were made up of tightly agglomerated silica nanoparticles. Metallocene catalyst was then immobilized over SiO2 and SiO2/PAM respectively to prepare supported metallocene catalyst for ethylene polymerization. Transmission electron micrographs (TEM) showed that support particles broke up to smaller particles and even nanoparticles in polyethylene (PE) matrix when the support particles were the fragile SiO2/PAM secondary particles, which shows a novel way to prepare silica/polyacrylamide/polyethylene nanocomposite.
Resumo:
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT-Si) supported catalyst, was developed. MT-Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT-Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay-silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system.
Resumo:
In this paper, a simple method of preparing {SiO2/Ru-(bPY)(3)(2+)}(n) multilayer films was described. Positively charged tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) and negatively charged SiO2 nanoparticles were assembled on ITO electrodes by a layer-by-layer method. Electrochemical and electrogenerated chemiluminescence (ECL) behaviors of the {SiO2/Ru(bpy)(3)(2+)}(n) multilayer film-modified electrodes were studied. Cyclic voltammetry, UV-visible spectroscopy, quartz crystal microbalance, and ECL were adopted to monitor the regular growth of the multilayer films. The multilayer films containing Ru(bpy)(3)(2+) was used for ECL determination of TPA, and the sensitivity was more than 1 order of magnitude higher than that observed for previous reported immobilization methods for the determination of TPA. The multilayer films also showed better stability for one month at least. The high sensitivity and stability mainly resulted from the high surface area and special structure of the silica nanoparticles.
Resumo:
A novel synthetic route for nearly monodispersed poly(methyl methacrylate)/SiO2 composite particles (PMSCP) is reported. Silica nanoparticles modified with oleic acid were used as 'seeds'. Methyl methacrylate (MMA) monomer was copolymerized with oleic acid via in situ emulsion polymerization, in the presence of an initiator; it resulted finally in the formation of composites with core-shell morphology. The composite particles were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The number of silica particles inside the composite particles increases with an increase in the silica concentration. The effect of grafted silica concentration on the morphology of PMSCP is also reported in detail. It was found by thermogravimetric analysis that PMSCP show a potential application for fire retardance.
Resumo:
Electrochemiluminescence (ECL) of tris(2,2'-bipyridyl) ruthenium [Ru(bpy)(3)(2+)] has received considerable attention. By immobilizing Ru(bpy)(3)(2+) on an e electrode surface, solid-state ECL provides several advantages over solution-phase ECL, such as reducing consumption of expensive reagent, simplifying experimental design and enhancing the ECL signal.This review presents the state of the art in solid-state ECL of Ru(bpy)(3)(2+).
Resumo:
Optically transparent, crack-free, mesoporous anatase TiO2 thin films were fabricated. The Ag/TiO2 composite films were prepared by incorporating Ag in the pores of TiO2 films with an impregnation method via photoreduction. The as-prepared composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectronic spectra (XPS) and N-2 adsorption. The release behavior of silver ions in the mesoporous composite film was also studied. Moreover, the antimicrobial behaviors of the mesoporous film were also investigated by confocal laser scanning microscopy.
Resumo:
A urea-based bis-silylated bipyridine ligand derived from 4,4'-diamino-2,2'-bipyridine has been prepared. Organic-inorganic hybrid materials with a high loading of lanthanide 2,2-bipyridine moieties were obtained by using the silylated bipyridine as the only siloxane network precursor in the presence of lanthanide ions (or lanthanide complexes). The in-situ formation of lanthanide complexes from lanthanide ions and the silylated bipyridine during the sol-gel processing was confirmed by the luminescence behavior of the obtained hybrid materials and that of the corresponding pure lanthanide complex [Ln(bpy)(2)Cl-3 center dot 2H(2)O].
Resumo:
Luminescent, mesoporous, and bioactive europium-doped hydroxyapatite (HAp:Eu3+) nanofibers and microbelts have been prepared by a combination of sol-gel and electrospinning processes with a cationic surfactant as template. The obtained multifunctional hydroxyapatite nanofibers and microbelts, which have mesoporous structure and red luminescence, were tested as drug carriers by investigating their drug-storage/release properties with ibuprofen (IBU) as model drug. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution (HR) TEM, FTIR spectroscopy, N-2 adsorption/desorption, photoluminescence (PL) spectra, and UV/Vis spectroscopy were used to characterize the structural, morphological, textural, and optical properties of the resulting samples.
Resumo:
Monodisperse rare-earth ion (Eu3+, Ce3+, Tb3+) doped LaPO4 particles with oval morphology were successfully prepared through a facile solvothermal process without further hear treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are well crystalline at 180 degrees C and assigned to the monoclinic monazite-type structure of the LaPO4 phase. It has been shown that all the as-synthesized samples show perfectly oval morphology with narrow size distribution. The possible growth mechanism of the LapO(4):Ln has been investigated as well.
Resumo:
Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.
Resumo:
A simple, large scale, and one-step process for the preparation of tris(2,2'-bipyridyl)ruthenium(I) (Ru(bpy)(3)(2+)) doped SiO2@carbon nanotubes (MVNTs) coaxial nanocable used for an ultrasensitive electrochemiluminescence (ECL) is presented for the first time. More importantly, a directly coated as-formed functional material on ITO electrode surface exhibits excellent ECL behavior, good stability, and high sensitivity in the presence of tripropylamine (TPA). This novel functional material will find potential applications in biosensor, electrophoresis and electroanalysis.
Resumo:
Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)(3)(2+) encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)(3)(2+) to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)(3)(2+) was grown through the Stober method. Highly luminescent Ru(bpy)(3)(2+) serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)(3)(2+) is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)(3)(2+) co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.