20 resultados para Signs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fucoidans, the sulfated polysacchrides extracted from brown algae, have been extensively studied for their diverse biological activities. However, there is no detailed report investigating the toxicity of fucoidan. In this study, the acute and subchronic (6 months) toxicity of varying levels of fucoidan extracted from Laminaria japonica was investigated in Wistar rats after oral administration. The results showed that no significant toxicological changes were observed when 300 mg/kg body weight per day fucoidan was administered to rats. But when the dose was increased to 900 and 2500 mg/kg body weight per day, the clotting time was significantly prolonged. Besides this, no other signs of toxicity were observed. Based on these results, it can be concluded that the no adverse effect level of fucoidan from L. japonica is 300 mg/kg body weight per day. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the production tail of oilfield, water-cut is very high in thick channel sand oil reservoir, but recovery efficiency is relative low, and recoverable remaining oil reserves is more abundant, so these reserves is potential target of additional development. The remaining oil generally distributed with accumulation in certain areas, controlled by the reservoir architecture that mainly is the lateral accretion shale beddings in the point bar, so the study of reservoir architecture and the remaining oil distribution patterns controlled by architecture are very significant. In this paper, taking the Minghuazhen formation of Gangxi oilfield as a case, using the method of hierarchy analysis, pattern fitting and multidimensional interaction, the architecture of the meandering river reservoir is precisely anatomized, and the remaining oil distribution patterns controlled by the different hierarchy architecture are summarized, which will help to guide the additional development of oil fields. Not only is the study significant to the remaining oil forecasting, but also it is important for the theory development of reservoir geology. With the knowledge of sequence correlation and fluvial correlation model, taking many factors into account, such as combination of well and seismic data, hierarchical controlling, sedimentary facies restraint, performance verification and 3-D closure, an accurate sequence frame of the study area was established. On the basis of high-resolution stratigraphic correlation, single layer and oil sand body are correlated within this frame, and four architecture hierarchies, composite channel, single channels, point bars and lateral accretion sandbody are identified, The result indicates that Minghuazhen Formation of Gangxi oilfield are dominated by meandering river deposition, including two types of channel sandbodies, narrow band and wide band channel sandbody, and each of them has different characteristics of facies variation laterally. Based on the identification of composite channel, according to the spatial combination patterns and identified signs of single channel, combined with channel sandbody distribution and tracer material data, single channel sandbodies are identified. According to empirical formula, point-bar scales of the study area are predicted, and three identification signs are summarized, that is, positive rhythm in depositional sequence, the maximum thick sand and near close to the abandoned channel, and point bars are identified. On the basis of point bar recognition, quantitative architecture models inner point bar are ascertained, taking the lateral accretion sand body and lateral accretion shale beddings in single well as foundation, and quantitative architecture models inner point bar as guidance, and result of tracer material data as controlling, the the lateral accretion sand body and lateral accretion shale beddings are forecasted interwell, so inner architecture of point bar is anatomied. 3-D structural model, 3-D facies model and 3-D petrophysical properties models are set up, spatial distribution characteristics of sedimentary facies and petrophysical properties is reappeared. On the basis of reservoir architecture analysis and performance production data, remaining oil distribution patterns controlled by different hierarchy architecture units, stacked channel, single channel and inner architecture of point bar, are summarized, which will help to guide the additional development of oil fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.