99 resultados para Session variability compensation
Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland
Resumo:
Understanding the driving forces of gene expression variation within human populations will provide important insights into the molecular basis of human phenotypic variation. In the genome, the gene expression variability differs among genes, and at prese
Resumo:
Gobiocypris rarus, a small, native cyprinid fish, is currently widely used in research on fish pathology, genetics, toxicology, embryology, and physiology in China. To develop this species as a model laboratory animal, inbred strains have been successfully created. In this study, to explore a method to discriminate inbred strains and evaluate inbreeding effects, morphological variation among three wild populations and three inbred stocks of G. rarus was investigated by the multivariate analysis of eight meristic and 30 morphometric characters. Tiny intraspecific variations in meristic characters were found, but these were not effective for population distinction. Stepwise discriminant analysis and cluster analysis of conventional measures and truss network data showed considerabe divergence among populations, especially between wild populations and inbred stocks. The average discriminant accuracy for all populations was 82.1% based on conventional measures and 86.4% based on truss data, whereas the discriminant accuracy for inbred strains was much higher. These results suggested that multivariate analyses of morphometric characters are an effective method for discriminating inbred strains of G. rarus. Morphological differences between wild populations and inbred strains appear to result from both genetic differences and environmental factors. Thirteen characters, extracted from stepwise discriminant analysis, played important roles in morphological differentiation. These characters were mainly measures related to body depth and head size.
Resumo:
Gas vesicles provide buoyancy to Microcystis and other common cyanobacterial bloom-forming species. gvpA and gvpC are structural genes encoding gas vesicle proteins. Phylogenetic analyses of 10 Microcystis strains/uncultured samples showed that gvpC and each intergenic segment of the gvpA-gvpC region can be divided into two types. The combination of different types of gvpC and intergenic segments is an important factor that diversifies this genomic region. Some Microcystis strains isolated in China possess a 172 to 176 bp sequence tag in the intergenic segment between gvpA and gvpC. The gvpA-gvpC region in Microcystis can be divided into at least 4 classes and more numbers of subclasses. Compared to rbcLX and other regions, the high variability of the gvpA-gvpC region should be more useful in identifying geographical isolates or ecotypes of Microcystis.
Resumo:
Four microsatellites were used to examine the genetic variability of the spawning stocks of Chinese sturgeon, Acipenser sinensis, from the Yangtze River sampled over a 3-year period (1999-2001). Within 60 individuals, a total of 28 alleles were detected over four polymorphic microsatellite loci. The number of alleles per locus ranged from 4 to 15, with an average allele number of 7. The number of genotypes per locus ranged from 6 to 41. The genetic diversity of four microsatellite loci varied from 0.34 to 0.67, with an average value of 0.54. For the four microsatellite loci, the deviation from the Hardy-Weinberg equilibrium was mainly due to null alleles. The mean number of alleles per locus and the mean heterozygosity were lower than the average values known for anadromous fishes. Fish were clustered according to their microsatellite characteristics using an unsupervised 'Artificial Neural Networks' method entitled 'Self-organizing Map'. The results revealed no significant genetic differentiation considering genetic distance among samples collected during different years. Lack of heterogeneity among different annual groups of spawning stocks was explained by the complex age structure (from 8 to 27 years for males and 12 to 35 years for females) of Chinese sturgeon, leading to formulate an hypothesis about the maintenance of genetic diversity and stability in long-lived animals.
Resumo:
A novel fiber Bragg grating (FBG) pressure sensor based on the double shell cylinder with temperature compensation is presented. in the sensing scheme, a sensing FBG is affixed in the tangential direction on the outer surface of the inner cylinder, and another FBG is affixed in the axial direction to compensate the temperature fluctuation. Based on the theory of elasticity, the theoretical analysis of the strain distribution of the sensing shell is presented. Experiments are carried out to test the performance of the sensor. A pressure sensitivity of 0.0937 nm/MPa has been achieved. The experimental results also demonstrate that the two FBGs have the same temperature sensitivity, which can be utilized to compensate the temperature induced wavelength shift during the pressure measurement. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we analyze and compare electrical compensation and deep level defects in semi-insulating ( SI) materials prepared by Fe-doping and high temperature annealing of undoped InP. Influence of deep level defects in the SI-InP materials on the electrical compensation has been studied thermally stimulated current spectroscopy (TSC). Electrical property of the Fe-doped SI-InP is deteriorated due to involvement of a high concentration of deep level defects in the compensation. In contrast, the concentration of deep defects is very low in high temperature annealed undoped SI-InP in which Fe acceptors formed by diffusion act as the only compensation centre to pin the Fermi level, resulting in excellent electrical performance. A more comprehensive electrical compensation model of SI-InP has been given based on the research results.