63 resultados para Series temporais
Resumo:
IEECAS SKLLQG
Resumo:
Ocean acoustic propagation and reverberation in continental shelf regions is often controlled by the seabed and sea surface boundaries. A series of three multi-national and multi-disciplinary experiments was conducted between 2000-2002 to identify and measure key ocean boundary characteristics. The frequency range of interest was nominally 500-5000 Hz with the main focus on the seabed, which is generally considered as the boundary of greatest importance and least understood. Two of the experiments were conducted in the Mediterranean in the Strait of Sicily and one experiment in the North Atlantic with sites on the outer New Jersey Shelf (STRATAFORM area) and on the Scotian Shelf. Measurements included seabed reflection, seabed, surface, and biologic scattering, propagation, reverberation, and ambient noise along with supporting oceanographic, geologic, and geophysical data. This paper is primarily intended to provide an overview of the experiments and the strategies that linked the various measurements together, with detailed experiment results contained in various papers in this volume and other sources
Resumo:
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato) yttrium chlorides 3a, 3b, 4a, 4b, 5a, 5b, 5c and 9. The X-ray structure of each has been determined, as well as of [YCl(L-4)(2)] (6), [Y(L-1)(2)OBut] (7) and [Y{CH(SiMe3)(2)}(thf)(mu-Cl)(2)Li(OEt2)(2)(mu-Cl)](2) (8).
Resumo:
In this paper, a quantum chemistry method was used to investigate the effect of different sizes of substituted phenanthrolines on absorption, energy transfer, and the electroluminescent performance of a series of Eu(TTA)(3)L (L = [1,10] phenanthroline (Phen), Pyrazino[2,3-f][1,10]phenanthroline (PyPhen), 2-methylprrazino[2,3-f][1,10] phenanthroline(MPP), dipyrido[3,2-a:2',3'-c]phenazine(DPPz), 11-methyldipyrido[3,2-a:2',3'c]phenazine(MDPz), 11.12-dimethyldipyrido[3,2-a:2',3'-c]phenazine(DDPz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (BDPz)) complexes. Absorption spectra calculations show that different sizes of secondary ligands have different effects on transition characters, intensities, and absorption peak positions.
Resumo:
Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.
Resumo:
We report a quantum-chemical study of electronic, optical and charge transporting properties of four platinum (II) complexes, pt((CN)-N-Lambda)(2) ((CN)-N-Lambda=phenylpyridine or thiophenepyridine). The lowest-lying absorptions at 442, 440, 447 and 429 nm are all attributed to the mixed transition characters of metal-to-ligand charge transfer (MLCT) and ligand-centered (LC) pi - pi(*) transition. While, unexpectedly, the lowest-lying phosphorescent emissions at 663, 660, 675 and 742 nm are mainly from metal-to-ligand charge transfer ((MLCT)-M-3) ligand-centered (LC) pi ->pi* transition. Ionization potential (IP), electron affinities (EA) and reorganization energy P (lambda(hole/electron)) were obtained to evaluate the charge transfer and balance properties between hole and electron.
Resumo:
A series of carbazole derivatives was synthesized and their electrical and photophysical properties were investigated. It is shown that the triplet energy levels of these hosts are higher than that of the most popular blue phosphorescent material iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C-2'] picolinate (FIrpic) and the most extensively used phosphorescent host material 4,4'-N,N'-dicarbazole-biphenyl (CBP). These new host materials also showed good thermal stability and high glass transition temperatures (T-g) ranging from 78 to 115 degrees C as the linkage group between the carbazoles was altered. Photophysical measurements indicate that the energy transfer between these new hosts and FIrpic is more efficient than that between CBP and FIrpic. Devices incorporating these novel carbazole derivatives as the host material doped with FIrpic were fabricated with the configurations of ITO/NPB (40 nm)/host:FIrpic (30 nm)/BCP (15 nm)/AlQ (30 nm)/LiF (1 nm)/Al (150 nm). High efficiencies (up to 13.4 cd/A) have been obtained when 1,4-bis (4-(9H-carbazol-9-yl)phenyl)cyclohexane (CBPCH) and bis(4-(9H-carbazol-9-yl)phenyl) ether (CBPE) were used as the host, respectively.
Resumo:
Gas transport of H-2, CO2, O-2, N-2, and CH4 in a series of cardo polyarylethers were examined over a temperature range of 30 similar to 100 degreesC. These polymers include three poly(aryletherketone)s, two poly(arylethersulfone)s, and one poly(aryletherketoneketone). It was found that the large length/diameter ratio of the polymer repeat unit for cardo polyaryletherketoneketone (PEKK-C) and strong intermolecular interaction in hydrogen-bonded polyarylethersulfone (PES-H) and hydrogen-bonded polyaryletherketone (PEK-H) resulted in a considerable increase in gas permselectivity. Alkyl-substituted polyaryletherketone (PEK-A), bearing a pendant bulky propyl group on the cardo ring, simultaneously exhibited 62.5% higher H-2 permeability and 59.8% higher H-2/N-2 permselectivity than unmodified poly(aryletherketone) (PEK-C). The causes of the trend were interpreted in terms of chain packing density, segmental motion ability, steric factor, and intermolecular interaction of polymers, together with gas kinetic diameter and critical temperature data.
Resumo:
Three novel series of monomers, namely n-1-bromo-[4-(4-methoxyphenylazo)phenyloxy]-alkanes (Bn, n = 3, 6, 10), n-[4-(4-methoxyphenylazo) phenyloxy]alkyloxy-4-methoxybenzene (Cn, n = 3, 6, 10) and n-[4-(4-methoxyphenylazo)phenyloxyl]alkyloxy-[4-methoxy-2,5-bis-(chloromethyl)] benzene (Dn, n = 3, 6, 10) were synthesized and characterized with FTIR, H-1 NMR, UV-visible and fluorescence spectroscopy. Their thermal behaviour was studied by different scanning calorimetry and polarizing optical microscopy. The results show that B3, B6 and C6 exhibit monotropic nematic liquid crystalline behaviour.
Resumo:
The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.
Resumo:
The structural and morphological evolution of mono-domains in thin films has been investigated for a series of liquid crystalline (LC) copolyethers. The copolyethers studied were synthesized by the reaction of 1-(4-hydroxy-4 ' -biphenylyl)-2-(4-hydroxyl-phenyl)propane (TPP) with 1,7-dibromoheptane and 1,11-undecane at different compositions (coTPPs-7/11). In contrast to the solution-cast thin films without annealing, which exhibit the isotropic homogeneous molecular orientation, mono-domains with a homeotropic alignment were found in coTPP-7/11(5/5) after the thin films were annealed in the high-temperature columnar phase (Phi '). Similar to the nucleation process in polymer crystallization, transmission electron microscopic observations show that small mono-domains appear in the initial stage of annealing, where molecules form a uniaxial in-plane chain orientation. With increasing annealing time, the molecular orientation gradually became tilted with respect to the substrate surface, and finally, a uniaxial homeotropic molecular orientation was achieved after a prolonged annealing time. The lateral size of mono-domains was found to increase continuously with annealing time and grew into a circular shape, indicating an isotropic lateral growth scheme which implies a hexagonal molecular packing proved by the electron diffraction experiments.
Resumo:
A series of main-chain Liquid-crystalline ionomers containing sulfonate groups pendant on the polymer backbone were synthesized by an interfacial condensation reaction of 4,4'-dihydroxy-alpha,alpha'-dimethyl benzalazine, a mesogenic monomer, with brilliant yellow (BY), a sulfonate-containing monomer, and a 1/9 mixture of terephthaloyl and sebacoyl dichloride. The structures of the polymers were characterized by LR and UV spectroscopies. DSC and thermogravimetric analysis were used to measure the thermal properties of those polymers, and the mesogenic properties were characterized by a polarized optical microscope, DSC, and wide-angle X-ray diffraction. The ionomers were thermally stable to about 310 degreesC. They were thermotropic liquid-crystalline polymers (LCPs) with high mesomorphic-phase transition temperatures and exhibited broad nematic mesogenic regions of 160-170 degreesC, and they were lyotropic LCPs with willowy leaf-shaped textures in sulfuric acid. However, the thermotropic liquid-crystalline properties were somewhat weakened because the concentration of BY was more than 8%. The inherent viscosity in N-methyl-2-pyrrolidone suggested that intramolecular associations of sulfonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration. (C) 2001 John Wiley & Sons, Inc.