50 resultados para Series Summation Method
Resumo:
A relative displacement between the grid points of optical fields and those of phase screens may occur in the simulation of light propagation through the turbulent atmosphere. A statistical interpolator is proposed to solve this problem in this paper. It is evaluated by the phase structure function and numerical experiments of light propagation through atmospheric turbulence with/without adaptive optics (AO) and it is also compared with the well-known linear interpolator under the same condition. Results of the phase structure function show that the statistical interpolator is more accurate in comparison with the linear one, especially in the high frequency region. More importantly, the long-exposure results of light propagation through the turbulent atmosphere with/without AO also show that the statistical interpolator is more accurate and reliable than the linear one. (C) 2009 Optical Society of America.
Resumo:
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.
Resumo:
A high-order accurate finite-difference scheme, the upwind compact method, is proposed. The 2-D unsteady incompressible Navier-Stokes equations are solved in primitive variables. The nonlinear convection terms in the governing equations are approximated by using upwind biased compact difference, and other spatial derivative terms are discretized by using the fourth-order compact difference. The upwind compact method is used to solve the driven flow in a square cavity. Solutions are obtained for Reynolds numbers as high as 10000. When Re less than or equal to 5000, the results agree well with those in literature. When Re = 7500 and Re = 10000, there is no convergence to a steady laminar solution, and the flow becomes unsteady and periodic.
Resumo:
Hypersonic viscous flow around a space shuttle with M(infinity) = 7, Re = 148000 and angle of attack alpha = 5-degrees is simulated numerically with the special Jacobian matrix splitting technique and simplified diffusion analogy method. With the simplified diffusion analogy method the efficiency of computation and resolution of the shock can be improved.
Resumo:
The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.
Resumo:
A method for optimizing tried wave functions in quantum Monte Carlo method has been found and used to calculate the energies of molecules, such as H-2, Li-2, H-3+, H-3 and H-4. Good results were obtained.
Resumo:
In this paper, applying the direct variational approach of first-order approximation to the capillary instability problem for the eases of rotating liquid column, toroid and films on both sides of cylinder, we have obtained the necessary and sufficient conditions for motion stability of the "cylindrical coreliquid-liquid-cylindrical shell" systems. The results obtained before are found to be special cases of the present investigation. At the same time, we have explained physical essence of rotating instability and settled a few disputes in previous investigations.
Resumo:
This paper is concerned with some mathematical aspects of the Van Dyke method inperturbation theory, i.e. the singularity criteria of perturbation series. The author suggestsa sign criterion and a Domb-syke plot for the cases with complex conjugate singularities, thussucceeding in extending the conclusions of Van Dyke's. Subsequently. effects of singularitiesof the lower order upon the criteria are taken into account. In addition, a method of locat-ing singular points is developed by analysing the new perturbation series derived by the Eulertransformation.
Resumo:
A parallel plate flow chamber was used to study the interaction force between human IgG (immobilized on a chip surface as ligand) and goat anti-human IgG (immobilized on microspheres surface as receptor). First, it was demonstrated that the binding force between the microspheres and the chip surface came from the bio-specific interaction between the antigen and the antibody. Secondly, it was obtained that the critical shear rate to detach microspheres from the chip surface increases with the ligand surface concentration. Finally, two models to estimate the antigen-antibody bond strength considering bonds' positions were proposed and analyzed.
Resumo:
This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands m ? long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( 1000 L m ? = ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( 5 L m ? = ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.
Resumo:
A new method is presented here to analyse the Peierls-Nabarro model of an edge dislocation in a rectangular plate. The analysis is based on the superposition scheme and series expansions of complex potentials. The stress field and dislocation density field on the slip plane can be expressed as the first and the second Chebyshev polynomial series respectively. Two sets of governing equations are obtained on the slip plane and outer boundary of the rectangular plate respectively. Three numerical methods are used to solve the governing equations.
Resumo:
More and more piezoelectric materials and structures have been used for structure control in aviation and aerospace industry. More efficient and convenient computation method for large complex structure with piezoelectric actuation devices is required. A load simulation method of piezoelectric actuation is presented in this paper. By this method, the freedom degree of finite element simulation is significantly reduced, the difficulty in defining in-plane voltage for multi-layers piezoelectric composite is overcome and the transfer computation between material main direction and the element main direction is simplified. The concept of simulation load is comprehensible and suitable for engineers of structure strength in shape and vibration control, thereby is valuable for promoting the application of piezoelectric material and structures in practical aviation and aerospace fields.
Resumo:
In this paper, we propose a novel three-dimensional imaging method by which the object is captured by a coded cameras array (CCA) and computationally reconstructed as a series of longitudinal layered surface images of the object. The distribution of cameras in array, named code pattern, is crucial for reconstructed images fidelity when the correlation decoding is used. We use DIRECT global optimization algorithm to design the code patterns that possess proper imaging property. We have conducted primary experiments to verify and test the performance of the proposed method with a simple discontinuous object and a small-scale CCA including nine cameras. After certain procedures such as capturing, photograph integrating, computational reconstructing and filtering, etc., we obtain reconstructed longitudinal layered surface images of the object with higher signal-to-noise ratio. The results of experiments show that the proposed method is feasible. It is a promising method to be used in fields such as remote sensing, machine vision, etc. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Accurate, analytical series expressions for the far-field diffraction of it Gaussian beam normally incident on a circular and central obscured aperture are derived with the help of the integration of parts method. With this expression, the far-field intensity distribution pattern can be obtained and the divergence angle is deduced too. Using the first five items of the series, the accuracy can satisfy most laser application fields. Compared with the conventional numerical integral method, the series representation is very convenient for understanding the physical meanings. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
One- and two-photon absorption properties of a series of fluorene derivatives with symmetrical charge transfer D-IT-D and A-IT-A structural motifs have been theoretically investigated with ZINDO/S method. The optimized structures and the characterization of frontier molecular orbitals were obtained by using AMI calculations. Two-photon absorption properties of molecules have been studied using three-state model. The calculation results have shown that fluorene-thiophene derivatives exhibit larger two-photon absorption cross-section as compared with other studied molecules. To illustrate the results, the crucial effects of thiophene ring on fluorenethiophene derivatives and the net charge changes on the pi-conjugated bridges are analyzed theoretically. (c) 2006 Elsevier B.V. All rights reserved.