28 resultados para Seismic Hazard
Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China
Resumo:
Soil wind erosion is the primary process and the main driving force for land desertification and sand-dust storms in and and semi-arid areas of Northern China. While many researchers have studied this issue, this study quantified the various indicators of soil wind erosion, using the GIS technology to extract the spatial data and to construct a RBFN (Radial Basis Function Network) model for Inner Mongolia. By calibrating sample data of the different levels of wind erosion hazard, the model parameters were established, and then the assessment of wind erosion hazard. Results show that in the southern parts of Inner Mongolia wind erosion hazards are very severe, counties in the middle regions of Inner Mongolia vary from moderate to severe, and in eastern are slight. Comparison of the results with other research shows conformity with actual conditions, proving the reasonability and applicability of the RBFN model. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Our analysis of approximately 40,000 km of multichannel 2-D seismic data, reef oil-field seismic data, and data from several boreholes led to the identification of two areas of reef carbonate reservoirs in deepwater areas (water depth >= 500 in) of the Qiongdongnan Basin (QDNB), northern South China Sea. High-resolution sequence stratigraphic analysis revealed that the transgressive and highstand system tracts of the mid-Miocene Meishan Formation in the Beijiao and Ledong-Lingshui Depressions developed reef carbonates. The seismic features of the reef carbonates in these two areas include chaotic bedding, intermittent internal reflections, chaotic or blank reflections, mounded reflections, and apparent amplitude anomalies, similar to the seismic characteristics of the LH11-1 reef reservoir in the Dongsha Uplift and Island Reef of the Salawati Basin, Indonesia, which house large oil fields. The impedance values of reefs in the Beijiao and Ledong-Lingshui Depressions are 8000-9000 g/cc x m/s. Impedance sections reveal that the impedance of the LH11-1 reef reservoir in the northern South China Sea is 800010000 g/cc x m/s, whereas that of pure limestone in BD23-1-1 is > 10000 g/cc x m/s. The mid-Miocene paleogeography of the Beijiao Depression was dominated by offshore and neritic environments, with only part of the southern Beijiao uplift emergent at that time. The input of terrigenous sediments was relatively minor in this area, meaning that terrigenous source areas were insignificant in terms of the Beijiao Depression: reef carbonates were probably widely distributed throughout the depression, as with the Ledong-Lingshui Depression. The combined geological and geophysical data indicate that shelf margin atolls were well developed in the Beijiao Depression, as in the Ledong-Lingshui Depression where small-scale patch or pinnacle reefs developed. These reef carbonates are promising reservoirs, representing important targets for deepwater hydrocarbon exploration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4-8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.
Resumo:
The onshore-offshore deep seismic experiment was carried out for the first time and filled the blankness of the seismic surveys in the transition area between South China and northeastern South China Sea. The seismic data were analyzed and processed. The different seismic phases were identified and their travel time arrivals were modeled by ray-tracing to study the P-wave velocity crustal structure of this area. The crustal structure of this area is the continental crust. The crust thickness is gradually decreasing southward along the on-shore-offshore seismic line. The low-velocity layer (5.5 similar to 5.9 km (.) s(-1)) exists generally in the middle crust (about 10.0 similar to 18.0km)with about 2.5 similar to 4.0 km thickness, which is also thinning seaward. No obvious high-velocity layer appears in the lower crust. The Binhai (littoral) fault zone is a low velocity zone, which is located about 35km southeast to the Nan'ao station and corresponding to the gradient belt of gravity & magnetism anomalies. The depth of the fault zone is close to the Moho discontinuity. The littoral fault zone is a boundary between the normal continental crust of South China and the thinned continental crust of the sea area.
Resumo:
The stratigraphic architecture, structure and Cenozoic tectonic evolution of the Tan-Lu fault zone in Laizhou Bay, eastern China, are analyzed based on interpretations of 31 new 2D seismic lines across Laizhou Bay. Cenozoic strata in the study area are divided into two layers separated by a prominent and widespread unconformity. The upper sedimentary layer is made up of Neogene and Quaternary fluvial and marine sediments, while the lower layer consists of Paleogene lacustrine and fluvial facies. In terms of tectonics, the sediments beneath the unconformity can be divided into four main structural units: the west depression, central uplift, east depression and Ludong uplift. The two branches of the middle Tan-Lu fault zone differ in their geometry and offset: the east branch fault is a steeply dipping S-shaped strike-slip fault that cuts acoustic basement at depths greater than 8 km, whereas the west branch fault is a relatively shallow normal fault. The Tan-Lu fault zone is the key fault in the study area, having controlled its Cenozoic evolution. Based on balanced cross-sections constructed along transverse seismic line 99.8 and longitudinal seismic line 699.0, the Cenozoic evolution of the middle Tan-Lu fault zone is divided into three stages: Paleocene-Eocene transtension, Oligocene-Early Miocene transpression and Middle Miocene to present-day stable subsidence. The reasons for the contrasting tectonic features of the two branch faults and the timing of the change from transtension to transpression are discussed. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.