19 resultados para Sculpture, Ancient.
Resumo:
National Natural Science Foundation of China [40771205]; National Science Fund for Distinguished Young Scholars [40625002]; Chinese Academy of Sciences [KZCX2-YW-315]
Resumo:
C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The morphology of the beach backshore and foreshore at Huiquan Bay, Qingdao, China, is characterized by a single intertidal sandbar system with a spring tide range of 4.59 m. The beach was measured with a laser total station of Leica TPS402. Contours of the beach were generated using data collected in March and November 2005. The survey method provided 2 mm measuring accuracy and 4-10 m horizontal spacing. The net accretion volume of the foreshore was about 11, 215 m(3) from March to November. After sand sculpture activity, the axis of the sand trough migrated onshore from about 3.5 m to 17.5 m on the foreshore beach in November. At the same time, the axis of the sandbar crest migrated onshore no more than 42.25 m on the northwest foreshore; and it migrated offshore no more than 23.75 m on the southeast foreshore. On the northwest and southeast foreshore beach, two strips of erosion areas with a thickness of 0-0.2 m appeared on the sandbar crest. Accretion occurred at the bottom of the sand trough with a thickness of similar to 0.2-0.6 m. The sandbar height decreased after sand sculpture activity, and it was no more than 0.7 m in March and 0.6 m in November. Human activities, such as sand digging on the sandbar crest during sand sculpture activity, also can disturb the beach morphology of intertidal bar systems. This phenomenon also was validated by comparison of beach morphology, the results of a color artificial tracer experiment and a sediment transportation trend prediction.